123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- /*
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- /*
- helicopter simulator class
- */
- #include "SIM_Helicopter.h"
- #include <stdio.h>
- namespace SITL {
- Helicopter::Helicopter(const char *frame_str) :
- Aircraft(frame_str)
- {
- mass = 2.13f;
- /*
- scaling from motor power to Newtons. Allows the copter
- to hover against gravity when the motor is at hover_throttle
- */
- thrust_scale = (mass * GRAVITY_MSS) / hover_throttle;
- // calculate lateral thrust ratio for tail rotor
- tail_thrust_scale = sinf(radians(hover_lean)) * thrust_scale / yaw_zero;
- frame_height = 0.1;
- if (strstr(frame_str, "-dual")) {
- frame_type = HELI_FRAME_DUAL;
- } else if (strstr(frame_str, "-compound")) {
- frame_type = HELI_FRAME_COMPOUND;
- } else {
- frame_type = HELI_FRAME_CONVENTIONAL;
- }
- gas_heli = (strstr(frame_str, "-gas") != nullptr);
- ground_behavior = GROUND_BEHAVIOR_NO_MOVEMENT;
- }
- /*
- update the helicopter simulation by one time step
- */
- void Helicopter::update(const struct sitl_input &input)
- {
- // get wind vector setup
- update_wind(input);
- float rsc = constrain_float((input.servos[7]-1000) / 1000.0f, 0, 1);
- // ignition only for gas helis
- bool ignition_enabled = gas_heli?(input.servos[5] > 1500):true;
- float thrust = 0;
- float roll_rate = 0;
- float pitch_rate = 0;
- float yaw_rate = 0;
- float torque_effect_accel = 0;
- float lateral_x_thrust = 0;
- float lateral_y_thrust = 0;
- float swash1 = (input.servos[0]-1000) / 1000.0f;
- float swash2 = (input.servos[1]-1000) / 1000.0f;
- float swash3 = (input.servos[2]-1000) / 1000.0f;
- if (!ignition_enabled) {
- rsc = 0;
- }
- float rsc_scale = rsc/rsc_setpoint;
- switch (frame_type) {
- case HELI_FRAME_CONVENTIONAL: {
- // simulate a traditional helicopter
- float tail_rotor = (input.servos[3]-1000) / 1000.0f;
- thrust = (rsc/rsc_setpoint) * (swash1+swash2+swash3) / 3.0f;
- torque_effect_accel = (rsc_scale+thrust) * rotor_rot_accel;
- roll_rate = swash1 - swash2;
- pitch_rate = (swash1+swash2) / 2.0f - swash3;
- yaw_rate = tail_rotor - 0.5f;
- lateral_y_thrust = yaw_rate * rsc_scale * tail_thrust_scale;
- break;
- }
- case HELI_FRAME_DUAL: {
- // simulate a tandem helicopter
- float swash4 = (input.servos[3]-1000) / 1000.0f;
- float swash5 = (input.servos[4]-1000) / 1000.0f;
- float swash6 = (input.servos[5]-1000) / 1000.0f;
- thrust = (rsc / rsc_setpoint) * (swash1+swash2+swash3+swash4+swash5+swash6) / 6.0f;
- torque_effect_accel = (rsc_scale + rsc / rsc_setpoint) * rotor_rot_accel * ((swash1+swash2+swash3) - (swash4+swash5+swash6));
- roll_rate = (swash1-swash2) + (swash4-swash5);
- pitch_rate = (swash1+swash2+swash3) - (swash4+swash5+swash6);
- yaw_rate = (swash1-swash2) + (swash5-swash4);
- break;
- }
- case HELI_FRAME_COMPOUND: {
- // simulate a compound helicopter
- float right_rotor = (input.servos[3]-1000) / 1000.0f;
- float left_rotor = (input.servos[4]-1000) / 1000.0f;
- thrust = (rsc/rsc_setpoint) * (swash1+swash2+swash3) / 3.0f;
- torque_effect_accel = (rsc_scale+thrust) * rotor_rot_accel;
- roll_rate = swash1 - swash2;
- pitch_rate = (swash1+swash2) / 2.0f - swash3;
- yaw_rate = right_rotor - left_rotor;
- lateral_x_thrust = (left_rotor+right_rotor-1) * rsc_scale * tail_thrust_scale;
- break;
- }
- }
- roll_rate *= rsc_scale;
- pitch_rate *= rsc_scale;
- yaw_rate *= rsc_scale;
- // rotational acceleration, in rad/s/s, in body frame
- Vector3f rot_accel;
- rot_accel.x = roll_rate * roll_rate_max;
- rot_accel.y = pitch_rate * pitch_rate_max;
- rot_accel.z = yaw_rate * yaw_rate_max;
- // rotational air resistance
- rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate;
- rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate;
- rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate;
- // torque effect on tail
- rot_accel.z += torque_effect_accel;
- // air resistance
- Vector3f air_resistance = -velocity_air_ef * (GRAVITY_MSS/terminal_velocity);
- // simulate rotor speed
- rpm1 = thrust * 1300;
- // scale thrust to newtons
- thrust *= thrust_scale;
- accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass);
- accel_body += dcm.transposed() * air_resistance;
- update_dynamics(rot_accel);
-
- // update lat/lon/altitude
- update_position();
- time_advance();
- // update magnetic field
- update_mag_field_bf();
- }
- } // namespace SITL
|