123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- /// @file PID.cpp
- /// @brief Generic PID algorithm
- #include <cmath>
- #include "PID.h"
- #include <AP_HAL/AP_HAL.h>
- #include <AP_Math/AP_Math.h>
- extern const AP_HAL::HAL& hal;
- const AP_Param::GroupInfo PID::var_info[] = {
- // @Param: P
- // @DisplayName: PID Proportional Gain
- // @Description: P Gain which produces an output value that is proportional to the current error value
- AP_GROUPINFO("P", 0, PID, _kp, 0),
- // @Param: I
- // @DisplayName: PID Integral Gain
- // @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
- AP_GROUPINFO("I", 1, PID, _ki, 0),
- // @Param: D
- // @DisplayName: PID Derivative Gain
- // @Description: D Gain which produces an output that is proportional to the rate of change of the error
- AP_GROUPINFO("D", 2, PID, _kd, 0),
- // @Param: IMAX
- // @DisplayName: PID Integral Maximum
- // @Description: The maximum/minimum value that the I term can output
- AP_GROUPINFO("IMAX", 3, PID, _imax, 0),
- AP_GROUPEND
- };
- float PID::get_pid(float error, float scaler)
- {
- uint32_t tnow = AP_HAL::millis();
- uint32_t dt = tnow - _last_t;
- float output = 0;
- float delta_time;
- if (_last_t == 0 || dt > 1000) {
- dt = 0;
- // if this PID hasn't been used for a full second then zero
- // the intergator term. This prevents I buildup from a
- // previous fight mode from causing a massive return before
- // the integrator gets a chance to correct itself
- reset_I();
- }
- _last_t = tnow;
- delta_time = (float)dt / 1000.0f;
- // Compute proportional component
- _pid_info.P = error * _kp;
- output += _pid_info.P;
- // Compute derivative component if time has elapsed
- if ((fabsf(_kd) > 0) && (dt > 0)) {
- float derivative;
- if (isnan(_last_derivative)) {
- // we've just done a reset, suppress the first derivative
- // term as we don't want a sudden change in input to cause
- // a large D output change
- derivative = 0;
- _last_derivative = 0;
- } else {
- derivative = (error - _last_error) / delta_time;
- }
- // discrete low pass filter, cuts out the
- // high frequency noise that can drive the controller crazy
- float RC = 1/(2*M_PI*_fCut);
- derivative = _last_derivative +
- ((delta_time / (RC + delta_time)) *
- (derivative - _last_derivative));
- // update state
- _last_error = error;
- _last_derivative = derivative;
- // add in derivative component
- _pid_info.D = _kd * derivative;
- output += _pid_info.D;
- }
- // scale the P and D components
- output *= scaler;
- _pid_info.D *= scaler;
- _pid_info.P *= scaler;
- // Compute integral component if time has elapsed
- if ((fabsf(_ki) > 0) && (dt > 0)) {
- _integrator += (error * _ki) * scaler * delta_time;
- if (_integrator < -_imax) {
- _integrator = -_imax;
- } else if (_integrator > _imax) {
- _integrator = _imax;
- }
- _pid_info.I = _integrator;
- output += _integrator;
- }
- _pid_info.target = output;
- return output;
- }
- void
- PID::reset_I()
- {
- _integrator = 0;
- // we use NAN (Not A Number) to indicate that the last
- // derivative value is not valid
- _last_derivative = NAN;
- _pid_info.I = 0;
- }
- void PID::reset() {
- memset(&_pid_info, 0, sizeof(_pid_info));
- reset_I();
- }
- void
- PID::load_gains()
- {
- _kp.load();
- _ki.load();
- _kd.load();
- _imax.load();
- }
- void
- PID::save_gains()
- {
- _kp.save();
- _ki.save();
- _kd.save();
- _imax.save();
- }
|