12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- /*
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include <AP_HAL/AP_HAL.h>
- #include "AP_Proximity_RangeFinder.h"
- #include <AP_SerialManager/AP_SerialManager.h>
- #include <ctype.h>
- #include <stdio.h>
- #include <AP_RangeFinder/RangeFinder_Backend.h>
- extern const AP_HAL::HAL& hal;
- AP_Proximity_RangeFinder::AP_Proximity_RangeFinder(AP_Proximity &_frontend,
- AP_Proximity::Proximity_State &_state) :
- AP_Proximity_Backend(_frontend, _state),
- _distance_upward(-1)
- {
- }
- // update the state of the sensor
- void AP_Proximity_RangeFinder::update(void)
- {
- // exit immediately if no rangefinder object
- const RangeFinder *rngfnd = frontend.get_rangefinder();
- if (rngfnd == nullptr) {
- set_status(AP_Proximity::Proximity_NoData);
- return;
- }
- uint32_t now = AP_HAL::millis();
- // look through all rangefinders
- for (uint8_t i=0; i < rngfnd->num_sensors(); i++) {
- AP_RangeFinder_Backend *sensor = rngfnd->get_backend(i);
- if (sensor == nullptr) {
- continue;
- }
- if (sensor->has_data()) {
- // check for horizontal range finders
- if (sensor->orientation() <= ROTATION_YAW_315) {
- uint8_t sector = (uint8_t)sensor->orientation();
- _angle[sector] = sector * 45;
- _distance[sector] = sensor->distance_cm() * 0.01f;
- _distance_min = sensor->min_distance_cm() * 0.01f;
- _distance_max = sensor->max_distance_cm() * 0.01f;
- _distance_valid[sector] = (_distance[sector] >= _distance_min) && (_distance[sector] <= _distance_max);
- _last_update_ms = now;
- update_boundary_for_sector(sector, true);
- }
- // check upward facing range finder
- if (sensor->orientation() == ROTATION_PITCH_90) {
- int16_t distance_upward = sensor->distance_cm();
- int16_t up_distance_min = sensor->min_distance_cm();
- int16_t up_distance_max = sensor->max_distance_cm();
- if ((distance_upward >= up_distance_min) && (distance_upward <= up_distance_max)) {
- _distance_upward = distance_upward * 0.01f;
- } else {
- _distance_upward = -1.0; // mark an valid reading
- }
- _last_upward_update_ms = now;
- }
- }
- }
- // check for timeout and set health status
- if ((_last_update_ms == 0) || (now - _last_update_ms > PROXIMITY_RANGEFIDER_TIMEOUT_MS)) {
- set_status(AP_Proximity::Proximity_NoData);
- } else {
- set_status(AP_Proximity::Proximity_Good);
- }
- }
- // get distance upwards in meters. returns true on success
- bool AP_Proximity_RangeFinder::get_upward_distance(float &distance) const
- {
- if ((AP_HAL::millis() - _last_upward_update_ms <= PROXIMITY_RANGEFIDER_TIMEOUT_MS) &&
- is_positive(_distance_upward)) {
- distance = _distance_upward;
- return true;
- }
- return false;
- }
|