123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635 |
- #include <AP_HAL/AP_HAL.h>
- #include "AP_NavEKF3.h"
- #include "AP_NavEKF3_core.h"
- #include <AP_AHRS/AP_AHRS.h>
- #include <AP_Vehicle/AP_Vehicle.h>
- #include <GCS_MAVLink/GCS.h>
- #include <AP_RangeFinder/RangeFinder_Backend.h>
- #include <AP_GPS/AP_GPS.h>
- #include <AP_Baro/AP_Baro.h>
- extern const AP_HAL::HAL& hal;
- /********************************************************
- * RESET FUNCTIONS *
- ********************************************************/
- // Reset velocity states to last GPS measurement if available or to zero if in constant position mode or if PV aiding is not absolute
- // Do not reset vertical velocity using GPS as there is baro alt available to constrain drift
- void NavEKF3_core::ResetVelocity(void)
- {
- // Store the position before the reset so that we can record the reset delta
- velResetNE.x = stateStruct.velocity.x;
- velResetNE.y = stateStruct.velocity.y;
- // reset the corresponding covariances
- zeroRows(P,4,5);
- zeroCols(P,4,5);
- if (PV_AidingMode != AID_ABSOLUTE) {
- stateStruct.velocity.zero();
- // set the variances using the measurement noise parameter
- P[5][5] = P[4][4] = sq(frontend->_gpsHorizVelNoise);
- } else {
- // reset horizontal velocity states to the GPS velocity if available
- if ((imuSampleTime_ms - lastTimeGpsReceived_ms < 250 && velResetSource == DEFAULT) || velResetSource == GPS) {
- stateStruct.velocity.x = gpsDataNew.vel.x;
- stateStruct.velocity.y = gpsDataNew.vel.y;
- // set the variances using the reported GPS speed accuracy
- P[5][5] = P[4][4] = sq(MAX(frontend->_gpsHorizVelNoise,gpsSpdAccuracy));
- // clear the timeout flags and counters
- velTimeout = false;
- lastVelPassTime_ms = imuSampleTime_ms;
- } else {
- stateStruct.velocity.x = 0.0f;
- stateStruct.velocity.y = 0.0f;
- // set the variances using the likely speed range
- P[5][5] = P[4][4] = sq(25.0f);
- // clear the timeout flags and counters
- velTimeout = false;
- lastVelPassTime_ms = imuSampleTime_ms;
- }
- }
- for (uint8_t i=0; i<imu_buffer_length; i++) {
- storedOutput[i].velocity.x = stateStruct.velocity.x;
- storedOutput[i].velocity.y = stateStruct.velocity.y;
- }
- outputDataNew.velocity.x = stateStruct.velocity.x;
- outputDataNew.velocity.y = stateStruct.velocity.y;
- outputDataDelayed.velocity.x = stateStruct.velocity.x;
- outputDataDelayed.velocity.y = stateStruct.velocity.y;
- // Calculate the position jump due to the reset
- velResetNE.x = stateStruct.velocity.x - velResetNE.x;
- velResetNE.y = stateStruct.velocity.y - velResetNE.y;
- // store the time of the reset
- lastVelReset_ms = imuSampleTime_ms;
- // clear reset data source preference
- velResetSource = DEFAULT;
- }
- // resets position states to last GPS measurement or to zero if in constant position mode
- void NavEKF3_core::ResetPosition(void)
- {
- // Store the position before the reset so that we can record the reset delta
- posResetNE.x = stateStruct.position.x;
- posResetNE.y = stateStruct.position.y;
- // reset the corresponding covariances
- zeroRows(P,7,8);
- zeroCols(P,7,8);
- if (PV_AidingMode != AID_ABSOLUTE) {
- // reset all position state history to the last known position
- stateStruct.position.x = lastKnownPositionNE.x;
- stateStruct.position.y = lastKnownPositionNE.y;
- // set the variances using the position measurement noise parameter
- P[7][7] = P[8][8] = sq(frontend->_gpsHorizPosNoise);
- } else {
- // Use GPS data as first preference if fresh data is available
- if ((imuSampleTime_ms - lastTimeGpsReceived_ms < 250 && posResetSource == DEFAULT) || posResetSource == GPS) {
- // record the ID of the GPS for the data we are using for the reset
- last_gps_idx = gpsDataNew.sensor_idx;
- // write to state vector and compensate for offset between last GPS measurement and the EKF time horizon
- stateStruct.position.x = gpsDataNew.pos.x + 0.001f*gpsDataNew.vel.x*(float(imuDataDelayed.time_ms) - float(gpsDataNew.time_ms));
- stateStruct.position.y = gpsDataNew.pos.y + 0.001f*gpsDataNew.vel.y*(float(imuDataDelayed.time_ms) - float(gpsDataNew.time_ms));
- // set the variances using the position measurement noise parameter
- P[7][7] = P[8][8] = sq(MAX(gpsPosAccuracy,frontend->_gpsHorizPosNoise));
- // clear the timeout flags and counters
- posTimeout = false;
- lastPosPassTime_ms = imuSampleTime_ms;
- } else if ((imuSampleTime_ms - rngBcnLast3DmeasTime_ms < 250 && posResetSource == DEFAULT) || posResetSource == RNGBCN) {
- // use the range beacon data as a second preference
- stateStruct.position.x = receiverPos.x;
- stateStruct.position.y = receiverPos.y;
- // set the variances from the beacon alignment filter
- P[7][7] = receiverPosCov[0][0];
- P[8][8] = receiverPosCov[1][1];
- // clear the timeout flags and counters
- rngBcnTimeout = false;
- lastRngBcnPassTime_ms = imuSampleTime_ms;
- }
- }
- for (uint8_t i=0; i<imu_buffer_length; i++) {
- storedOutput[i].position.x = stateStruct.position.x;
- storedOutput[i].position.y = stateStruct.position.y;
- }
- outputDataNew.position.x = stateStruct.position.x;
- outputDataNew.position.y = stateStruct.position.y;
- outputDataDelayed.position.x = stateStruct.position.x;
- outputDataDelayed.position.y = stateStruct.position.y;
- // Calculate the position jump due to the reset
- posResetNE.x = stateStruct.position.x - posResetNE.x;
- posResetNE.y = stateStruct.position.y - posResetNE.y;
- // store the time of the reset
- lastPosReset_ms = imuSampleTime_ms;
- // clear reset source preference
- posResetSource = DEFAULT;
- }
- // reset the vertical position state using the last height measurement
- void NavEKF3_core::ResetHeight(void)
- {
- // Store the position before the reset so that we can record the reset delta
- posResetD = stateStruct.position.z;
- // write to the state vector
- stateStruct.position.z = -hgtMea;
- outputDataNew.position.z = stateStruct.position.z;
- outputDataDelayed.position.z = stateStruct.position.z;
- // reset the terrain state height
- if (onGround) {
- // assume vehicle is sitting on the ground
- terrainState = stateStruct.position.z + rngOnGnd;
- } else {
- // can make no assumption other than vehicle is not below ground level
- terrainState = MAX(stateStruct.position.z + rngOnGnd , terrainState);
- }
- for (uint8_t i=0; i<imu_buffer_length; i++) {
- storedOutput[i].position.z = stateStruct.position.z;
- }
- // Calculate the position jump due to the reset
- posResetD = stateStruct.position.z - posResetD;
- // store the time of the reset
- lastPosResetD_ms = imuSampleTime_ms;
- // clear the timeout flags and counters
- hgtTimeout = false;
- lastHgtPassTime_ms = imuSampleTime_ms;
- // reset the corresponding covariances
- zeroRows(P,9,9);
- zeroCols(P,9,9);
- // set the variances to the measurement variance
- P[9][9] = posDownObsNoise;
- // Reset the vertical velocity state using GPS vertical velocity if we are airborne
- // Check that GPS vertical velocity data is available and can be used
- if (inFlight && !gpsNotAvailable && frontend->_fusionModeGPS == 0 && !frontend->inhibitGpsVertVelUse) {
- stateStruct.velocity.z = gpsDataNew.vel.z;
- } else if (onGround) {
- stateStruct.velocity.z = 0.0f;
- }
- for (uint8_t i=0; i<imu_buffer_length; i++) {
- storedOutput[i].velocity.z = stateStruct.velocity.z;
- }
- outputDataNew.velocity.z = stateStruct.velocity.z;
- outputDataDelayed.velocity.z = stateStruct.velocity.z;
- // reset the corresponding covariances
- zeroRows(P,6,6);
- zeroCols(P,6,6);
- // set the variances to the measurement variance
- P[6][6] = sq(frontend->_gpsVertVelNoise);
- }
- // Zero the EKF height datum
- // Return true if the height datum reset has been performed
- bool NavEKF3_core::resetHeightDatum(void)
- {
- if (activeHgtSource == HGT_SOURCE_RNG || !onGround) {
- // only allow resets when on the ground.
- // If using using rangefinder for height then never perform a
- // reset of the height datum
- return false;
- }
- // record the old height estimate
- float oldHgt = -stateStruct.position.z;
- // reset the barometer so that it reads zero at the current height
- AP::baro().update_calibration();
- // reset the height state
- stateStruct.position.z = 0.0f;
- // adjust the height of the EKF origin so that the origin plus baro height before and after the reset is the same
- if (validOrigin) {
- if (!gpsGoodToAlign) {
- // if we don't have GPS lock then we shouldn't be doing a
- // resetHeightDatum, but if we do then the best option is
- // to maintain the old error
- EKF_origin.alt += (int32_t)(100.0f * oldHgt);
- } else {
- // if we have a good GPS lock then reset to the GPS
- // altitude. This ensures the reported AMSL alt from
- // getLLH() is equal to GPS altitude, while also ensuring
- // that the relative alt is zero
- EKF_origin.alt = AP::gps().location().alt;
- }
- ekfGpsRefHgt = (double)0.01 * (double)EKF_origin.alt;
- }
- // set the terrain state to zero (on ground). The adjustment for
- // frame height will get added in the later constraints
- terrainState = 0;
- return true;
- }
- /********************************************************
- * FUSE MEASURED_DATA *
- ********************************************************/
- // select fusion of velocity, position and height measurements
- void NavEKF3_core::SelectVelPosFusion()
- {
- // Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz
- // If so, don't fuse measurements on this time step to reduce frame over-runs
- // Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements
- if (magFusePerformed && dtIMUavg < 0.005f && !posVelFusionDelayed) {
- posVelFusionDelayed = true;
- return;
- } else {
- posVelFusionDelayed = false;
- }
- // read GPS data from the sensor and check for new data in the buffer
- readGpsData();
- gpsDataToFuse = storedGPS.recall(gpsDataDelayed,imuDataDelayed.time_ms);
- // Determine if we need to fuse position and velocity data on this time step
- if (gpsDataToFuse && PV_AidingMode == AID_ABSOLUTE) {
- // correct GPS data for position offset of antenna phase centre relative to the IMU
- Vector3f posOffsetBody = AP::gps().get_antenna_offset(gpsDataDelayed.sensor_idx) - accelPosOffset;
- if (!posOffsetBody.is_zero()) {
- if (fuseVelData) {
- // TODO use a filtered angular rate with a group delay that matches the GPS delay
- Vector3f angRate = imuDataDelayed.delAng * (1.0f/imuDataDelayed.delAngDT);
- Vector3f velOffsetBody = angRate % posOffsetBody;
- Vector3f velOffsetEarth = prevTnb.mul_transpose(velOffsetBody);
- gpsDataDelayed.vel -= velOffsetEarth;
- }
- Vector3f posOffsetEarth = prevTnb.mul_transpose(posOffsetBody);
- gpsDataDelayed.pos.x -= posOffsetEarth.x;
- gpsDataDelayed.pos.y -= posOffsetEarth.y;
- gpsDataDelayed.hgt += posOffsetEarth.z;
- }
- // Don't fuse velocity data if GPS doesn't support it
- if (frontend->_fusionModeGPS <= 1) {
- fuseVelData = true;
- } else {
- fuseVelData = false;
- }
- fusePosData = true;
- } else {
- fuseVelData = false;
- fusePosData = false;
- }
- // we have GPS data to fuse and a request to align the yaw using the GPS course
- if (gpsYawResetRequest) {
- realignYawGPS();
- }
- // Select height data to be fused from the available baro, range finder and GPS sources
- selectHeightForFusion();
- // if we are using GPS, check for a change in receiver and reset position and height
- if (gpsDataToFuse && PV_AidingMode == AID_ABSOLUTE && gpsDataDelayed.sensor_idx != last_gps_idx) {
- // record the ID of the GPS that we are using for the reset
- last_gps_idx = gpsDataDelayed.sensor_idx;
- // Store the position before the reset so that we can record the reset delta
- posResetNE.x = stateStruct.position.x;
- posResetNE.y = stateStruct.position.y;
- // Set the position states to the position from the new GPS
- stateStruct.position.x = gpsDataNew.pos.x;
- stateStruct.position.y = gpsDataNew.pos.y;
- // Calculate the position offset due to the reset
- posResetNE.x = stateStruct.position.x - posResetNE.x;
- posResetNE.y = stateStruct.position.y - posResetNE.y;
- // Add the offset to the output observer states
- for (uint8_t i=0; i<imu_buffer_length; i++) {
- storedOutput[i].position.x += posResetNE.x;
- storedOutput[i].position.y += posResetNE.y;
- }
- outputDataNew.position.x += posResetNE.x;
- outputDataNew.position.y += posResetNE.y;
- outputDataDelayed.position.x += posResetNE.x;
- outputDataDelayed.position.y += posResetNE.y;
- // store the time of the reset
- lastPosReset_ms = imuSampleTime_ms;
- // If we are alseo using GPS as the height reference, reset the height
- if (activeHgtSource == HGT_SOURCE_GPS) {
- // Store the position before the reset so that we can record the reset delta
- posResetD = stateStruct.position.z;
- // write to the state vector
- stateStruct.position.z = -hgtMea;
- // Calculate the position jump due to the reset
- posResetD = stateStruct.position.z - posResetD;
- // Add the offset to the output observer states
- outputDataNew.position.z += posResetD;
- outputDataDelayed.position.z += posResetD;
- for (uint8_t i=0; i<imu_buffer_length; i++) {
- storedOutput[i].position.z += posResetD;
- }
- // store the time of the reset
- lastPosResetD_ms = imuSampleTime_ms;
- }
- }
- // If we are operating without any aiding, fuse in the last known position
- // to constrain tilt drift. This assumes a non-manoeuvring vehicle
- // Do this to coincide with the height fusion
- if (fuseHgtData && PV_AidingMode == AID_NONE) {
- gpsDataDelayed.vel.zero();
- gpsDataDelayed.pos.x = lastKnownPositionNE.x;
- gpsDataDelayed.pos.y = lastKnownPositionNE.y;
- fusePosData = true;
- fuseVelData = false;
- }
- // perform fusion
- if (fuseVelData || fusePosData || fuseHgtData) {
- FuseVelPosNED();
- // clear the flags to prevent repeated fusion of the same data
- fuseVelData = false;
- fuseHgtData = false;
- fusePosData = false;
- }
- }
- // fuse selected position, velocity and height measurements
- void NavEKF3_core::FuseVelPosNED()
- {
- // start performance timer
- hal.util->perf_begin(_perf_FuseVelPosNED);
- // health is set bad until test passed
- velHealth = false;
- posHealth = false;
- hgtHealth = false;
- // declare variables used to check measurement errors
- Vector3f velInnov;
- // declare variables used to control access to arrays
- bool fuseData[6] = {false,false,false,false,false,false};
- uint8_t stateIndex;
- uint8_t obsIndex;
- // declare variables used by state and covariance update calculations
- Vector6 R_OBS; // Measurement variances used for fusion
- Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only
- Vector6 observation;
- float SK;
- // perform sequential fusion of GPS measurements. This assumes that the
- // errors in the different velocity and position components are
- // uncorrelated which is not true, however in the absence of covariance
- // data from the GPS receiver it is the only assumption we can make
- // so we might as well take advantage of the computational efficiencies
- // associated with sequential fusion
- if (fuseVelData || fusePosData || fuseHgtData) {
- // form the observation vector
- observation[0] = gpsDataDelayed.vel.x;
- observation[1] = gpsDataDelayed.vel.y;
- observation[2] = gpsDataDelayed.vel.z;
- observation[3] = gpsDataDelayed.pos.x;
- observation[4] = gpsDataDelayed.pos.y;
- observation[5] = -hgtMea;
- // calculate additional error in GPS position caused by manoeuvring
- float posErr = frontend->gpsPosVarAccScale * accNavMag;
- // estimate the GPS Velocity, GPS horiz position and height measurement variances.
- // Use different errors if operating without external aiding using an assumed position or velocity of zero
- if (PV_AidingMode == AID_NONE) {
- if (tiltAlignComplete && motorsArmed) {
- // This is a compromise between corrections for gyro errors and reducing effect of manoeuvre accelerations on tilt estimate
- R_OBS[0] = sq(constrain_float(frontend->_noaidHorizNoise, 0.5f, 50.0f));
- } else {
- // Use a smaller value to give faster initial alignment
- R_OBS[0] = sq(0.5f);
- }
- R_OBS[1] = R_OBS[0];
- R_OBS[2] = R_OBS[0];
- R_OBS[3] = R_OBS[0];
- R_OBS[4] = R_OBS[0];
- for (uint8_t i=0; i<=2; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i];
- } else {
- if (gpsSpdAccuracy > 0.0f) {
- // use GPS receivers reported speed accuracy if available and floor at value set by GPS velocity noise parameter
- R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsHorizVelNoise, 50.0f));
- R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsVertVelNoise, 50.0f));
- } else {
- // calculate additional error in GPS velocity caused by manoeuvring
- R_OBS[0] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag);
- R_OBS[2] = sq(constrain_float(frontend->_gpsVertVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsDVelVarAccScale * accNavMag);
- }
- R_OBS[1] = R_OBS[0];
- // Use GPS reported position accuracy if available and floor at value set by GPS position noise parameter
- if (gpsPosAccuracy > 0.0f) {
- R_OBS[3] = sq(constrain_float(gpsPosAccuracy, frontend->_gpsHorizPosNoise, 100.0f));
- } else {
- R_OBS[3] = sq(constrain_float(frontend->_gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr);
- }
- R_OBS[4] = R_OBS[3];
- // For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity
- // For horizontal GPS velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPS performance
- // plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early
- for (uint8_t i=0; i<=2; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag);
- }
- R_OBS[5] = posDownObsNoise;
- for (uint8_t i=3; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i];
- // if vertical GPS velocity data and an independent height source is being used, check to see if the GPS vertical velocity and altimeter
- // innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting
- // the accelerometers and we should disable the GPS and barometer innovation consistency checks.
- if (useGpsVertVel && fuseVelData && (frontend->_altSource != 2)) {
- // calculate innovations for height and vertical GPS vel measurements
- float hgtErr = stateStruct.position.z - observation[5];
- float velDErr = stateStruct.velocity.z - observation[2];
- // check if they are the same sign and both more than 3-sigma out of bounds
- if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[9][9] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[6][6] + R_OBS_DATA_CHECKS[2]))) {
- badIMUdata = true;
- } else {
- badIMUdata = false;
- }
- }
- // calculate innovations and check GPS data validity using an innovation consistency check
- // test position measurements
- if (fusePosData) {
- // test horizontal position measurements
- innovVelPos[3] = stateStruct.position.x - observation[3];
- innovVelPos[4] = stateStruct.position.y - observation[4];
- varInnovVelPos[3] = P[7][7] + R_OBS_DATA_CHECKS[3];
- varInnovVelPos[4] = P[8][8] + R_OBS_DATA_CHECKS[4];
- // apply an innovation consistency threshold test, but don't fail if bad IMU data
- float maxPosInnov2 = sq(MAX(0.01f * (float)frontend->_gpsPosInnovGate, 1.0f))*(varInnovVelPos[3] + varInnovVelPos[4]);
- posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2;
- posHealth = ((posTestRatio < 1.0f) || badIMUdata);
- // use position data if healthy or timed out
- if (PV_AidingMode == AID_NONE) {
- posHealth = true;
- lastPosPassTime_ms = imuSampleTime_ms;
- } else if (posHealth || posTimeout) {
- posHealth = true;
- lastPosPassTime_ms = imuSampleTime_ms;
- // if timed out or outside the specified uncertainty radius, reset to the GPS
- if (posTimeout || ((P[8][8] + P[7][7]) > sq(float(frontend->_gpsGlitchRadiusMax)))) {
- // reset the position to the current GPS position
- ResetPosition();
- // reset the velocity to the GPS velocity
- ResetVelocity();
- // don't fuse GPS data on this time step
- fusePosData = false;
- fuseVelData = false;
- // Reset the position variances and corresponding covariances to a value that will pass the checks
- zeroRows(P,7,8);
- zeroCols(P,7,8);
- P[7][7] = sq(float(0.5f*frontend->_gpsGlitchRadiusMax));
- P[8][8] = P[7][7];
- // Reset the normalised innovation to avoid failing the bad fusion tests
- posTestRatio = 0.0f;
- velTestRatio = 0.0f;
- }
- } else {
- posHealth = false;
- }
- }
- // test velocity measurements
- if (fuseVelData) {
- // test velocity measurements
- uint8_t imax = 2;
- // Don't fuse vertical velocity observations if inhibited by the user or if we are using synthetic data
- if (frontend->_fusionModeGPS > 0 || PV_AidingMode != AID_ABSOLUTE || frontend->inhibitGpsVertVelUse) {
- imax = 1;
- }
- float innovVelSumSq = 0; // sum of squares of velocity innovations
- float varVelSum = 0; // sum of velocity innovation variances
- for (uint8_t i = 0; i<=imax; i++) {
- // velocity states start at index 4
- stateIndex = i + 4;
- // calculate innovations using blended and single IMU predicted states
- velInnov[i] = stateStruct.velocity[i] - observation[i]; // blended
- // calculate innovation variance
- varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i];
- // sum the innovation and innovation variances
- innovVelSumSq += sq(velInnov[i]);
- varVelSum += varInnovVelPos[i];
- }
- // apply an innovation consistency threshold test, but don't fail if bad IMU data
- // calculate the test ratio
- velTestRatio = innovVelSumSq / (varVelSum * sq(MAX(0.01f * (float)frontend->_gpsVelInnovGate, 1.0f)));
- // fail if the ratio is greater than 1
- velHealth = ((velTestRatio < 1.0f) || badIMUdata);
- // use velocity data if healthy, timed out, or in constant position mode
- if (velHealth || velTimeout) {
- velHealth = true;
- // restart the timeout count
- lastVelPassTime_ms = imuSampleTime_ms;
- // If we are doing full aiding and velocity fusion times out, reset to the GPS velocity
- if (PV_AidingMode == AID_ABSOLUTE && velTimeout) {
- // reset the velocity to the GPS velocity
- ResetVelocity();
- // don't fuse GPS velocity data on this time step
- fuseVelData = false;
- // Reset the normalised innovation to avoid failing the bad fusion tests
- velTestRatio = 0.0f;
- }
- } else {
- velHealth = false;
- }
- }
- // test height measurements
- if (fuseHgtData) {
- // calculate height innovations
- innovVelPos[5] = stateStruct.position.z - observation[5];
- varInnovVelPos[5] = P[9][9] + R_OBS_DATA_CHECKS[5];
- // calculate the innovation consistency test ratio
- hgtTestRatio = sq(innovVelPos[5]) / (sq(MAX(0.01f * (float)frontend->_hgtInnovGate, 1.0f)) * varInnovVelPos[5]);
- // when on ground we accept a larger test ratio to allow
- // the filter to handle large switch on IMU bias errors
- // without rejecting the height sensor
- const float maxTestRatio = (PV_AidingMode == AID_NONE && onGround)? 3.0 : 1.0;
- // fail if the ratio is > 1, but don't fail if bad IMU data
- hgtHealth = ((hgtTestRatio < maxTestRatio) || badIMUdata);
- // Fuse height data if healthy or timed out or in constant position mode
- if (hgtHealth || hgtTimeout) {
- // Calculate a filtered value to be used by pre-flight health checks
- // We need to filter because wind gusts can generate significant baro noise and we want to be able to detect bias errors in the inertial solution
- if (onGround) {
- float dtBaro = (imuSampleTime_ms - lastHgtPassTime_ms)*1.0e-3f;
- const float hgtInnovFiltTC = 2.0f;
- float alpha = constrain_float(dtBaro/(dtBaro+hgtInnovFiltTC),0.0f,1.0f);
- hgtInnovFiltState += (innovVelPos[5]-hgtInnovFiltState)*alpha;
- } else {
- hgtInnovFiltState = 0.0f;
- }
- // if timed out, reset the height
- if (hgtTimeout) {
- ResetHeight();
- }
- // If we have got this far then declare the height data as healthy and reset the timeout counter
- hgtHealth = true;
- lastHgtPassTime_ms = imuSampleTime_ms;
- }
- }
- // set range for sequential fusion of velocity and position measurements depending on which data is available and its health
- if (fuseVelData && velHealth) {
- fuseData[0] = true;
- fuseData[1] = true;
- if (useGpsVertVel) {
- fuseData[2] = true;
- }
- }
- if (fusePosData && posHealth) {
- fuseData[3] = true;
- fuseData[4] = true;
- }
- if (fuseHgtData && hgtHealth) {
- fuseData[5] = true;
- }
- // fuse measurements sequentially
- for (obsIndex=0; obsIndex<=5; obsIndex++) {
- if (fuseData[obsIndex]) {
- stateIndex = 4 + obsIndex;
- // calculate the measurement innovation, using states from a different time coordinate if fusing height data
- // adjust scaling on GPS measurement noise variances if not enough satellites
- if (obsIndex <= 2)
- {
- innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - observation[obsIndex];
- R_OBS[obsIndex] *= sq(gpsNoiseScaler);
- }
- else if (obsIndex == 3 || obsIndex == 4) {
- innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex];
- R_OBS[obsIndex] *= sq(gpsNoiseScaler);
- } else if (obsIndex == 5) {
- innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex];
- const float gndMaxBaroErr = 4.0f;
- const float gndBaroInnovFloor = -0.5f;
- if(getTouchdownExpected() && activeHgtSource == HGT_SOURCE_BARO) {
- // when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor
- // constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr
- // this function looks like this:
- // |/
- //---------|---------
- // ____/|
- // / |
- // / |
- innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr);
- }
- }
- // calculate the Kalman gain and calculate innovation variances
- varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex];
- SK = 1.0f/varInnovVelPos[obsIndex];
- for (uint8_t i= 0; i<=9; i++) {
- Kfusion[i] = P[i][stateIndex]*SK;
- }
- // inhibit delta angle bias state estmation by setting Kalman gains to zero
- if (!inhibitDelAngBiasStates) {
- for (uint8_t i = 10; i<=12; i++) {
- Kfusion[i] = P[i][stateIndex]*SK;
- }
- } else {
- // zero indexes 10 to 12 = 3*4 bytes
- memset(&Kfusion[10], 0, 12);
- }
- // inhibit delta velocity bias state estimation by setting Kalman gains to zero
- if (!inhibitDelVelBiasStates) {
- for (uint8_t i = 13; i<=15; i++) {
- Kfusion[i] = P[i][stateIndex]*SK;
- }
- } else {
- // zero indexes 13 to 15 = 3*4 bytes
- memset(&Kfusion[13], 0, 12);
- }
- // inhibit magnetic field state estimation by setting Kalman gains to zero
- if (!inhibitMagStates) {
- for (uint8_t i = 16; i<=21; i++) {
- Kfusion[i] = P[i][stateIndex]*SK;
- }
- } else {
- // zero indexes 16 to 21 = 6*4 bytes
- memset(&Kfusion[16], 0, 24);
- }
- // inhibit wind state estimation by setting Kalman gains to zero
- if (!inhibitWindStates) {
- Kfusion[22] = P[22][stateIndex]*SK;
- Kfusion[23] = P[23][stateIndex]*SK;
- } else {
- // zero indexes 22 to 23 = 2*4 bytes
- memset(&Kfusion[22], 0, 8);
- }
- // update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations
- // this is a numerically optimised implementation of standard equation P = (I - K*H)*P;
- for (uint8_t i= 0; i<=stateIndexLim; i++) {
- for (uint8_t j= 0; j<=stateIndexLim; j++)
- {
- KHP[i][j] = Kfusion[i] * P[stateIndex][j];
- }
- }
- // Check that we are not going to drive any variances negative and skip the update if so
- bool healthyFusion = true;
- for (uint8_t i= 0; i<=stateIndexLim; i++) {
- if (KHP[i][i] > P[i][i]) {
- healthyFusion = false;
- }
- }
- if (healthyFusion) {
- // update the covariance matrix
- for (uint8_t i= 0; i<=stateIndexLim; i++) {
- for (uint8_t j= 0; j<=stateIndexLim; j++) {
- P[i][j] = P[i][j] - KHP[i][j];
- }
- }
- // force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
- ForceSymmetry();
- ConstrainVariances();
- // update states and renormalise the quaternions
- for (uint8_t i = 0; i<=stateIndexLim; i++) {
- statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex];
- }
- stateStruct.quat.normalize();
- // record good fusion status
- if (obsIndex == 0) {
- faultStatus.bad_nvel = false;
- } else if (obsIndex == 1) {
- faultStatus.bad_evel = false;
- } else if (obsIndex == 2) {
- faultStatus.bad_dvel = false;
- } else if (obsIndex == 3) {
- faultStatus.bad_npos = false;
- } else if (obsIndex == 4) {
- faultStatus.bad_epos = false;
- } else if (obsIndex == 5) {
- faultStatus.bad_dpos = false;
- }
- } else {
- // record bad fusion status
- if (obsIndex == 0) {
- faultStatus.bad_nvel = true;
- } else if (obsIndex == 1) {
- faultStatus.bad_evel = true;
- } else if (obsIndex == 2) {
- faultStatus.bad_dvel = true;
- } else if (obsIndex == 3) {
- faultStatus.bad_npos = true;
- } else if (obsIndex == 4) {
- faultStatus.bad_epos = true;
- } else if (obsIndex == 5) {
- faultStatus.bad_dpos = true;
- }
- }
- }
- }
- }
- // stop performance timer
- hal.util->perf_end(_perf_FuseVelPosNED);
- }
- /********************************************************
- * MISC FUNCTIONS *
- ********************************************************/
- // select the height measurement to be fused from the available baro, range finder and GPS sources
- void NavEKF3_core::selectHeightForFusion()
- {
- // Read range finder data and check for new data in the buffer
- // This data is used by both height and optical flow fusion processing
- readRangeFinder();
- rangeDataToFuse = storedRange.recall(rangeDataDelayed,imuDataDelayed.time_ms);
- // correct range data for the body frame position offset relative to the IMU
- // the corrected reading is the reading that would have been taken if the sensor was
- // co-located with the IMU
- if (rangeDataToFuse) {
- AP_RangeFinder_Backend *sensor = frontend->_rng.get_backend(rangeDataDelayed.sensor_idx);
- if (sensor != nullptr) {
- Vector3f posOffsetBody = sensor->get_pos_offset() - accelPosOffset;
- if (!posOffsetBody.is_zero()) {
- Vector3f posOffsetEarth = prevTnb.mul_transpose(posOffsetBody);
- rangeDataDelayed.rng += posOffsetEarth.z / prevTnb.c.z;
- }
- }
- }
- // read baro height data from the sensor and check for new data in the buffer
- readBaroData();
- baroDataToFuse = storedBaro.recall(baroDataDelayed, imuDataDelayed.time_ms);
- // select height source
- if (((frontend->_useRngSwHgt > 0) && (frontend->_altSource == 1)) && (imuSampleTime_ms - rngValidMeaTime_ms < 500)) {
- if (frontend->_altSource == 1) {
- // always use range finder
- activeHgtSource = HGT_SOURCE_RNG;
- } else {
- // determine if we are above or below the height switch region
- float rangeMaxUse = 1e-4f * (float)frontend->_rng.max_distance_cm_orient(ROTATION_PITCH_270) * (float)frontend->_useRngSwHgt;
- bool aboveUpperSwHgt = (terrainState - stateStruct.position.z) > rangeMaxUse;
- bool belowLowerSwHgt = (terrainState - stateStruct.position.z) < 0.7f * rangeMaxUse;
- // If the terrain height is consistent and we are moving slowly, then it can be
- // used as a height reference in combination with a range finder
- // apply a hysteresis to the speed check to prevent rapid switching
- bool dontTrustTerrain, trustTerrain;
- if (filterStatus.flags.horiz_vel) {
- // We can use the velocity estimate
- float horizSpeed = norm(stateStruct.velocity.x, stateStruct.velocity.y);
- dontTrustTerrain = (horizSpeed > frontend->_useRngSwSpd) || !terrainHgtStable;
- float trust_spd_trigger = MAX((frontend->_useRngSwSpd - 1.0f),(frontend->_useRngSwSpd * 0.5f));
- trustTerrain = (horizSpeed < trust_spd_trigger) && terrainHgtStable;
- } else {
- // We can't use the velocity estimate
- dontTrustTerrain = !terrainHgtStable;
- trustTerrain = terrainHgtStable;
- }
- /*
- * Switch between range finder and primary height source using height above ground and speed thresholds with
- * hysteresis to avoid rapid switching. Using range finder for height requires a consistent terrain height
- * which cannot be assumed if the vehicle is moving horizontally.
- */
- if ((aboveUpperSwHgt || dontTrustTerrain) && (activeHgtSource == HGT_SOURCE_RNG)) {
- // cannot trust terrain or range finder so stop using range finder height
- if (frontend->_altSource == 0) {
- activeHgtSource = HGT_SOURCE_BARO;
- } else if (frontend->_altSource == 2) {
- activeHgtSource = HGT_SOURCE_GPS;
- }
- } else if (belowLowerSwHgt && trustTerrain && (activeHgtSource != HGT_SOURCE_RNG)) {
- // reliable terrain and range finder so start using range finder height
- activeHgtSource = HGT_SOURCE_RNG;
- }
- }
- } else if ((frontend->_altSource == 2) && ((imuSampleTime_ms - lastTimeGpsReceived_ms) < 500) && validOrigin && gpsAccuracyGood) {
- activeHgtSource = HGT_SOURCE_GPS;
- } else if ((frontend->_altSource == 3) && validOrigin && rngBcnGoodToAlign) {
- activeHgtSource = HGT_SOURCE_BCN;
- } else {
- activeHgtSource = HGT_SOURCE_BARO;
- }
- // Use Baro alt as a fallback if we lose range finder or GPS
- bool lostRngHgt = ((activeHgtSource == HGT_SOURCE_RNG) && ((imuSampleTime_ms - rngValidMeaTime_ms) > 500));
- bool lostGpsHgt = ((activeHgtSource == HGT_SOURCE_GPS) && ((imuSampleTime_ms - lastTimeGpsReceived_ms) > 2000));
- if (lostRngHgt || lostGpsHgt) {
- activeHgtSource = HGT_SOURCE_BARO;
- }
- // if there is new baro data to fuse, calculate filtered baro data required by other processes
- if (baroDataToFuse) {
- // calculate offset to baro data that enables us to switch to Baro height use during operation
- if (activeHgtSource != HGT_SOURCE_BARO) {
- calcFiltBaroOffset();
- }
- // filtered baro data used to provide a reference for takeoff
- // it is is reset to last height measurement on disarming in performArmingChecks()
- if (!getTakeoffExpected()) {
- const float gndHgtFiltTC = 0.5f;
- const float dtBaro = frontend->hgtAvg_ms*1.0e-3f;
- float alpha = constrain_float(dtBaro / (dtBaro+gndHgtFiltTC),0.0f,1.0f);
- meaHgtAtTakeOff += (baroDataDelayed.hgt-meaHgtAtTakeOff)*alpha;
- }
- }
- // If we are not using GPS as the primary height sensor, correct EKF origin height so that
- // combined local NED position height and origin height remains consistent with the GPS altitude
- // This also enables the GPS height to be used as a backup height source
- if (gpsDataToFuse &&
- (((frontend->_originHgtMode & (1 << 0)) && (activeHgtSource == HGT_SOURCE_BARO)) ||
- ((frontend->_originHgtMode & (1 << 1)) && (activeHgtSource == HGT_SOURCE_RNG)))
- ) {
- correctEkfOriginHeight();
- }
- // Select the height measurement source
- if (rangeDataToFuse && (activeHgtSource == HGT_SOURCE_RNG)) {
- // using range finder data
- // correct for tilt using a flat earth model
- if (prevTnb.c.z >= 0.7) {
- // calculate height above ground
- hgtMea = MAX(rangeDataDelayed.rng * prevTnb.c.z, rngOnGnd);
- // correct for terrain position relative to datum
- hgtMea -= terrainState;
- // enable fusion
- fuseHgtData = true;
- // set the observation noise
- posDownObsNoise = sq(constrain_float(frontend->_rngNoise, 0.1f, 10.0f));
- // add uncertainty created by terrain gradient and vehicle tilt
- posDownObsNoise += sq(rangeDataDelayed.rng * frontend->_terrGradMax) * MAX(0.0f , (1.0f - sq(prevTnb.c.z)));
- } else {
- // disable fusion if tilted too far
- fuseHgtData = false;
- }
- } else if (gpsDataToFuse && (activeHgtSource == HGT_SOURCE_GPS)) {
- // using GPS data
- hgtMea = gpsDataDelayed.hgt;
- // enable fusion
- fuseHgtData = true;
- // set the observation noise using receiver reported accuracy or the horizontal noise scaled for typical VDOP/HDOP ratio
- if (gpsHgtAccuracy > 0.0f) {
- posDownObsNoise = sq(constrain_float(gpsHgtAccuracy, 1.5f * frontend->_gpsHorizPosNoise, 100.0f));
- } else {
- posDownObsNoise = sq(constrain_float(1.5f * frontend->_gpsHorizPosNoise, 0.1f, 10.0f));
- }
- } else if (baroDataToFuse && (activeHgtSource == HGT_SOURCE_BARO)) {
- // using Baro data
- hgtMea = baroDataDelayed.hgt - baroHgtOffset;
- // enable fusion
- fuseHgtData = true;
- // set the observation noise
- posDownObsNoise = sq(constrain_float(frontend->_baroAltNoise, 0.1f, 10.0f));
- // reduce weighting (increase observation noise) on baro if we are likely to be in ground effect
- if (getTakeoffExpected() || getTouchdownExpected()) {
- posDownObsNoise *= frontend->gndEffectBaroScaler;
- }
- // If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff
- // This prevents negative baro disturbances due to copter downwash corrupting the EKF altitude during initial ascent
- if (motorsArmed && getTakeoffExpected()) {
- hgtMea = MAX(hgtMea, meaHgtAtTakeOff);
- }
- } else {
- fuseHgtData = false;
- }
- // If we haven't fused height data for a while, then declare the height data as being timed out
- // set timeout period based on whether we have vertical GPS velocity available to constrain drift
- hgtRetryTime_ms = (useGpsVertVel && !velTimeout) ? frontend->hgtRetryTimeMode0_ms : frontend->hgtRetryTimeMode12_ms;
- if (imuSampleTime_ms - lastHgtPassTime_ms > hgtRetryTime_ms) {
- hgtTimeout = true;
- } else {
- hgtTimeout = false;
- }
- }
- /*
- * Fuse body frame velocity measurements using explicit algebraic equations generated with Matlab symbolic toolbox.
- * The script file used to generate these and other equations in this filter can be found here:
- * https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
- */
- void NavEKF3_core::FuseBodyVel()
- {
- Vector24 H_VEL;
- Vector3f bodyVelPred;
- // Copy required states to local variable names
- float q0 = stateStruct.quat[0];
- float q1 = stateStruct.quat[1];
- float q2 = stateStruct.quat[2];
- float q3 = stateStruct.quat[3];
- float vn = stateStruct.velocity.x;
- float ve = stateStruct.velocity.y;
- float vd = stateStruct.velocity.z;
- // Fuse X, Y and Z axis measurements sequentially assuming observation errors are uncorrelated
- for (uint8_t obsIndex=0; obsIndex<=2; obsIndex++) {
- // calculate relative velocity in sensor frame including the relative motion due to rotation
- bodyVelPred = (prevTnb * stateStruct.velocity);
- // correct sensor offset body frame position offset relative to IMU
- Vector3f posOffsetBody = (*bodyOdmDataDelayed.body_offset) - accelPosOffset;
- // correct prediction for relative motion due to rotation
- // note - % operator overloaded for cross product
- if (imuDataDelayed.delAngDT > 0.001f) {
- bodyVelPred += (imuDataDelayed.delAng * (1.0f / imuDataDelayed.delAngDT)) % posOffsetBody;
- }
- // calculate observation jacobians and Kalman gains
- if (obsIndex == 0) {
- // calculate X axis observation Jacobian
- H_VEL[0] = q2*vd*-2.0f+q3*ve*2.0f+q0*vn*2.0f;
- H_VEL[1] = q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f;
- H_VEL[2] = q0*vd*-2.0f+q1*ve*2.0f-q2*vn*2.0f;
- H_VEL[3] = q1*vd*2.0f+q0*ve*2.0f-q3*vn*2.0f;
- H_VEL[4] = q0*q0+q1*q1-q2*q2-q3*q3;
- H_VEL[5] = q0*q3*2.0f+q1*q2*2.0f;
- H_VEL[6] = q0*q2*-2.0f+q1*q3*2.0f;
- for (uint8_t index = 7; index < 24; index++) {
- H_VEL[index] = 0.0f;
- }
- // calculate intermediate expressions for X axis Kalman gains
- float R_VEL = sq(bodyOdmDataDelayed.velErr);
- float t2 = q0*q3*2.0f;
- float t3 = q1*q2*2.0f;
- float t4 = t2+t3;
- float t5 = q0*q0;
- float t6 = q1*q1;
- float t7 = q2*q2;
- float t8 = q3*q3;
- float t9 = t5+t6-t7-t8;
- float t10 = q0*q2*2.0f;
- float t25 = q1*q3*2.0f;
- float t11 = t10-t25;
- float t12 = q3*ve*2.0f;
- float t13 = q0*vn*2.0f;
- float t26 = q2*vd*2.0f;
- float t14 = t12+t13-t26;
- float t15 = q3*vd*2.0f;
- float t16 = q2*ve*2.0f;
- float t17 = q1*vn*2.0f;
- float t18 = t15+t16+t17;
- float t19 = q0*vd*2.0f;
- float t20 = q2*vn*2.0f;
- float t27 = q1*ve*2.0f;
- float t21 = t19+t20-t27;
- float t22 = q1*vd*2.0f;
- float t23 = q0*ve*2.0f;
- float t28 = q3*vn*2.0f;
- float t24 = t22+t23-t28;
- float t29 = P[0][0]*t14;
- float t30 = P[1][1]*t18;
- float t31 = P[4][5]*t9;
- float t32 = P[5][5]*t4;
- float t33 = P[0][5]*t14;
- float t34 = P[1][5]*t18;
- float t35 = P[3][5]*t24;
- float t79 = P[6][5]*t11;
- float t80 = P[2][5]*t21;
- float t36 = t31+t32+t33+t34+t35-t79-t80;
- float t37 = t4*t36;
- float t38 = P[4][6]*t9;
- float t39 = P[5][6]*t4;
- float t40 = P[0][6]*t14;
- float t41 = P[1][6]*t18;
- float t42 = P[3][6]*t24;
- float t81 = P[6][6]*t11;
- float t82 = P[2][6]*t21;
- float t43 = t38+t39+t40+t41+t42-t81-t82;
- float t44 = P[4][0]*t9;
- float t45 = P[5][0]*t4;
- float t46 = P[1][0]*t18;
- float t47 = P[3][0]*t24;
- float t84 = P[6][0]*t11;
- float t85 = P[2][0]*t21;
- float t48 = t29+t44+t45+t46+t47-t84-t85;
- float t49 = t14*t48;
- float t50 = P[4][1]*t9;
- float t51 = P[5][1]*t4;
- float t52 = P[0][1]*t14;
- float t53 = P[3][1]*t24;
- float t86 = P[6][1]*t11;
- float t87 = P[2][1]*t21;
- float t54 = t30+t50+t51+t52+t53-t86-t87;
- float t55 = t18*t54;
- float t56 = P[4][2]*t9;
- float t57 = P[5][2]*t4;
- float t58 = P[0][2]*t14;
- float t59 = P[1][2]*t18;
- float t60 = P[3][2]*t24;
- float t78 = P[2][2]*t21;
- float t88 = P[6][2]*t11;
- float t61 = t56+t57+t58+t59+t60-t78-t88;
- float t62 = P[4][3]*t9;
- float t63 = P[5][3]*t4;
- float t64 = P[0][3]*t14;
- float t65 = P[1][3]*t18;
- float t66 = P[3][3]*t24;
- float t90 = P[6][3]*t11;
- float t91 = P[2][3]*t21;
- float t67 = t62+t63+t64+t65+t66-t90-t91;
- float t68 = t24*t67;
- float t69 = P[4][4]*t9;
- float t70 = P[5][4]*t4;
- float t71 = P[0][4]*t14;
- float t72 = P[1][4]*t18;
- float t73 = P[3][4]*t24;
- float t92 = P[6][4]*t11;
- float t93 = P[2][4]*t21;
- float t74 = t69+t70+t71+t72+t73-t92-t93;
- float t75 = t9*t74;
- float t83 = t11*t43;
- float t89 = t21*t61;
- float t76 = R_VEL+t37+t49+t55+t68+t75-t83-t89;
- float t77;
- // calculate innovation variance for X axis observation and protect against a badly conditioned calculation
- if (t76 > R_VEL) {
- t77 = 1.0f/t76;
- faultStatus.bad_xvel = false;
- } else {
- t76 = R_VEL;
- t77 = 1.0f/R_VEL;
- faultStatus.bad_xvel = true;
- return;
- }
- varInnovBodyVel[0] = t77;
- // calculate innovation for X axis observation
- innovBodyVel[0] = bodyVelPred.x - bodyOdmDataDelayed.vel.x;
- // calculate Kalman gains for X-axis observation
- Kfusion[0] = t77*(t29+P[0][5]*t4+P[0][4]*t9-P[0][6]*t11+P[0][1]*t18-P[0][2]*t21+P[0][3]*t24);
- Kfusion[1] = t77*(t30+P[1][5]*t4+P[1][4]*t9+P[1][0]*t14-P[1][6]*t11-P[1][2]*t21+P[1][3]*t24);
- Kfusion[2] = t77*(-t78+P[2][5]*t4+P[2][4]*t9+P[2][0]*t14-P[2][6]*t11+P[2][1]*t18+P[2][3]*t24);
- Kfusion[3] = t77*(t66+P[3][5]*t4+P[3][4]*t9+P[3][0]*t14-P[3][6]*t11+P[3][1]*t18-P[3][2]*t21);
- Kfusion[4] = t77*(t69+P[4][5]*t4+P[4][0]*t14-P[4][6]*t11+P[4][1]*t18-P[4][2]*t21+P[4][3]*t24);
- Kfusion[5] = t77*(t32+P[5][4]*t9+P[5][0]*t14-P[5][6]*t11+P[5][1]*t18-P[5][2]*t21+P[5][3]*t24);
- Kfusion[6] = t77*(-t81+P[6][5]*t4+P[6][4]*t9+P[6][0]*t14+P[6][1]*t18-P[6][2]*t21+P[6][3]*t24);
- Kfusion[7] = t77*(P[7][5]*t4+P[7][4]*t9+P[7][0]*t14-P[7][6]*t11+P[7][1]*t18-P[7][2]*t21+P[7][3]*t24);
- Kfusion[8] = t77*(P[8][5]*t4+P[8][4]*t9+P[8][0]*t14-P[8][6]*t11+P[8][1]*t18-P[8][2]*t21+P[8][3]*t24);
- Kfusion[9] = t77*(P[9][5]*t4+P[9][4]*t9+P[9][0]*t14-P[9][6]*t11+P[9][1]*t18-P[9][2]*t21+P[9][3]*t24);
- if (!inhibitDelAngBiasStates) {
- Kfusion[10] = t77*(P[10][5]*t4+P[10][4]*t9+P[10][0]*t14-P[10][6]*t11+P[10][1]*t18-P[10][2]*t21+P[10][3]*t24);
- Kfusion[11] = t77*(P[11][5]*t4+P[11][4]*t9+P[11][0]*t14-P[11][6]*t11+P[11][1]*t18-P[11][2]*t21+P[11][3]*t24);
- Kfusion[12] = t77*(P[12][5]*t4+P[12][4]*t9+P[12][0]*t14-P[12][6]*t11+P[12][1]*t18-P[12][2]*t21+P[12][3]*t24);
- } else {
- // zero indexes 10 to 12 = 3*4 bytes
- memset(&Kfusion[10], 0, 12);
- }
- if (!inhibitDelVelBiasStates) {
- Kfusion[13] = t77*(P[13][5]*t4+P[13][4]*t9+P[13][0]*t14-P[13][6]*t11+P[13][1]*t18-P[13][2]*t21+P[13][3]*t24);
- Kfusion[14] = t77*(P[14][5]*t4+P[14][4]*t9+P[14][0]*t14-P[14][6]*t11+P[14][1]*t18-P[14][2]*t21+P[14][3]*t24);
- Kfusion[15] = t77*(P[15][5]*t4+P[15][4]*t9+P[15][0]*t14-P[15][6]*t11+P[15][1]*t18-P[15][2]*t21+P[15][3]*t24);
- } else {
- // zero indexes 13 to 15 = 3*4 bytes
- memset(&Kfusion[13], 0, 12);
- }
- if (!inhibitMagStates) {
- Kfusion[16] = t77*(P[16][5]*t4+P[16][4]*t9+P[16][0]*t14-P[16][6]*t11+P[16][1]*t18-P[16][2]*t21+P[16][3]*t24);
- Kfusion[17] = t77*(P[17][5]*t4+P[17][4]*t9+P[17][0]*t14-P[17][6]*t11+P[17][1]*t18-P[17][2]*t21+P[17][3]*t24);
- Kfusion[18] = t77*(P[18][5]*t4+P[18][4]*t9+P[18][0]*t14-P[18][6]*t11+P[18][1]*t18-P[18][2]*t21+P[18][3]*t24);
- Kfusion[19] = t77*(P[19][5]*t4+P[19][4]*t9+P[19][0]*t14-P[19][6]*t11+P[19][1]*t18-P[19][2]*t21+P[19][3]*t24);
- Kfusion[20] = t77*(P[20][5]*t4+P[20][4]*t9+P[20][0]*t14-P[20][6]*t11+P[20][1]*t18-P[20][2]*t21+P[20][3]*t24);
- Kfusion[21] = t77*(P[21][5]*t4+P[21][4]*t9+P[21][0]*t14-P[21][6]*t11+P[21][1]*t18-P[21][2]*t21+P[21][3]*t24);
- } else {
- // zero indexes 16 to 21 = 6*4 bytes
- memset(&Kfusion[16], 0, 24);
- }
- if (!inhibitWindStates) {
- Kfusion[22] = t77*(P[22][5]*t4+P[22][4]*t9+P[22][0]*t14-P[22][6]*t11+P[22][1]*t18-P[22][2]*t21+P[22][3]*t24);
- Kfusion[23] = t77*(P[23][5]*t4+P[23][4]*t9+P[23][0]*t14-P[23][6]*t11+P[23][1]*t18-P[23][2]*t21+P[23][3]*t24);
- } else {
- // zero indexes 22 to 23 = 2*4 bytes
- memset(&Kfusion[22], 0, 8);
- }
- } else if (obsIndex == 1) {
- // calculate Y axis observation Jacobian
- H_VEL[0] = q1*vd*2.0f+q0*ve*2.0f-q3*vn*2.0f;
- H_VEL[1] = q0*vd*2.0f-q1*ve*2.0f+q2*vn*2.0f;
- H_VEL[2] = q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f;
- H_VEL[3] = q2*vd*2.0f-q3*ve*2.0f-q0*vn*2.0f;
- H_VEL[4] = q0*q3*-2.0f+q1*q2*2.0f;
- H_VEL[5] = q0*q0-q1*q1+q2*q2-q3*q3;
- H_VEL[6] = q0*q1*2.0f+q2*q3*2.0f;
- for (uint8_t index = 7; index < 24; index++) {
- H_VEL[index] = 0.0f;
- }
- // calculate intermediate expressions for Y axis Kalman gains
- float R_VEL = sq(bodyOdmDataDelayed.velErr);
- float t2 = q0*q3*2.0f;
- float t9 = q1*q2*2.0f;
- float t3 = t2-t9;
- float t4 = q0*q0;
- float t5 = q1*q1;
- float t6 = q2*q2;
- float t7 = q3*q3;
- float t8 = t4-t5+t6-t7;
- float t10 = q0*q1*2.0f;
- float t11 = q2*q3*2.0f;
- float t12 = t10+t11;
- float t13 = q1*vd*2.0f;
- float t14 = q0*ve*2.0f;
- float t26 = q3*vn*2.0f;
- float t15 = t13+t14-t26;
- float t16 = q0*vd*2.0f;
- float t17 = q2*vn*2.0f;
- float t27 = q1*ve*2.0f;
- float t18 = t16+t17-t27;
- float t19 = q3*vd*2.0f;
- float t20 = q2*ve*2.0f;
- float t21 = q1*vn*2.0f;
- float t22 = t19+t20+t21;
- float t23 = q3*ve*2.0f;
- float t24 = q0*vn*2.0f;
- float t28 = q2*vd*2.0f;
- float t25 = t23+t24-t28;
- float t29 = P[0][0]*t15;
- float t30 = P[1][1]*t18;
- float t31 = P[5][4]*t8;
- float t32 = P[6][4]*t12;
- float t33 = P[0][4]*t15;
- float t34 = P[1][4]*t18;
- float t35 = P[2][4]*t22;
- float t78 = P[4][4]*t3;
- float t79 = P[3][4]*t25;
- float t36 = t31+t32+t33+t34+t35-t78-t79;
- float t37 = P[5][6]*t8;
- float t38 = P[6][6]*t12;
- float t39 = P[0][6]*t15;
- float t40 = P[1][6]*t18;
- float t41 = P[2][6]*t22;
- float t81 = P[4][6]*t3;
- float t82 = P[3][6]*t25;
- float t42 = t37+t38+t39+t40+t41-t81-t82;
- float t43 = t12*t42;
- float t44 = P[5][0]*t8;
- float t45 = P[6][0]*t12;
- float t46 = P[1][0]*t18;
- float t47 = P[2][0]*t22;
- float t83 = P[4][0]*t3;
- float t84 = P[3][0]*t25;
- float t48 = t29+t44+t45+t46+t47-t83-t84;
- float t49 = t15*t48;
- float t50 = P[5][1]*t8;
- float t51 = P[6][1]*t12;
- float t52 = P[0][1]*t15;
- float t53 = P[2][1]*t22;
- float t85 = P[4][1]*t3;
- float t86 = P[3][1]*t25;
- float t54 = t30+t50+t51+t52+t53-t85-t86;
- float t55 = t18*t54;
- float t56 = P[5][2]*t8;
- float t57 = P[6][2]*t12;
- float t58 = P[0][2]*t15;
- float t59 = P[1][2]*t18;
- float t60 = P[2][2]*t22;
- float t87 = P[4][2]*t3;
- float t88 = P[3][2]*t25;
- float t61 = t56+t57+t58+t59+t60-t87-t88;
- float t62 = t22*t61;
- float t63 = P[5][3]*t8;
- float t64 = P[6][3]*t12;
- float t65 = P[0][3]*t15;
- float t66 = P[1][3]*t18;
- float t67 = P[2][3]*t22;
- float t89 = P[4][3]*t3;
- float t90 = P[3][3]*t25;
- float t68 = t63+t64+t65+t66+t67-t89-t90;
- float t69 = P[5][5]*t8;
- float t70 = P[6][5]*t12;
- float t71 = P[0][5]*t15;
- float t72 = P[1][5]*t18;
- float t73 = P[2][5]*t22;
- float t92 = P[4][5]*t3;
- float t93 = P[3][5]*t25;
- float t74 = t69+t70+t71+t72+t73-t92-t93;
- float t75 = t8*t74;
- float t80 = t3*t36;
- float t91 = t25*t68;
- float t76 = R_VEL+t43+t49+t55+t62+t75-t80-t91;
- float t77;
- // calculate innovation variance for Y axis observation and protect against a badly conditioned calculation
- if (t76 > R_VEL) {
- t77 = 1.0f/t76;
- faultStatus.bad_yvel = false;
- } else {
- t76 = R_VEL;
- t77 = 1.0f/R_VEL;
- faultStatus.bad_yvel = true;
- return;
- }
- varInnovBodyVel[1] = t77;
- // calculate innovation for Y axis observation
- innovBodyVel[1] = bodyVelPred.y - bodyOdmDataDelayed.vel.y;
- // calculate Kalman gains for Y-axis observation
- Kfusion[0] = t77*(t29-P[0][4]*t3+P[0][5]*t8+P[0][6]*t12+P[0][1]*t18+P[0][2]*t22-P[0][3]*t25);
- Kfusion[1] = t77*(t30-P[1][4]*t3+P[1][5]*t8+P[1][0]*t15+P[1][6]*t12+P[1][2]*t22-P[1][3]*t25);
- Kfusion[2] = t77*(t60-P[2][4]*t3+P[2][5]*t8+P[2][0]*t15+P[2][6]*t12+P[2][1]*t18-P[2][3]*t25);
- Kfusion[3] = t77*(-t90-P[3][4]*t3+P[3][5]*t8+P[3][0]*t15+P[3][6]*t12+P[3][1]*t18+P[3][2]*t22);
- Kfusion[4] = t77*(-t78+P[4][5]*t8+P[4][0]*t15+P[4][6]*t12+P[4][1]*t18+P[4][2]*t22-P[4][3]*t25);
- Kfusion[5] = t77*(t69-P[5][4]*t3+P[5][0]*t15+P[5][6]*t12+P[5][1]*t18+P[5][2]*t22-P[5][3]*t25);
- Kfusion[6] = t77*(t38-P[6][4]*t3+P[6][5]*t8+P[6][0]*t15+P[6][1]*t18+P[6][2]*t22-P[6][3]*t25);
- Kfusion[7] = t77*(-P[7][4]*t3+P[7][5]*t8+P[7][0]*t15+P[7][6]*t12+P[7][1]*t18+P[7][2]*t22-P[7][3]*t25);
- Kfusion[8] = t77*(-P[8][4]*t3+P[8][5]*t8+P[8][0]*t15+P[8][6]*t12+P[8][1]*t18+P[8][2]*t22-P[8][3]*t25);
- Kfusion[9] = t77*(-P[9][4]*t3+P[9][5]*t8+P[9][0]*t15+P[9][6]*t12+P[9][1]*t18+P[9][2]*t22-P[9][3]*t25);
- if (!inhibitDelAngBiasStates) {
- Kfusion[10] = t77*(-P[10][4]*t3+P[10][5]*t8+P[10][0]*t15+P[10][6]*t12+P[10][1]*t18+P[10][2]*t22-P[10][3]*t25);
- Kfusion[11] = t77*(-P[11][4]*t3+P[11][5]*t8+P[11][0]*t15+P[11][6]*t12+P[11][1]*t18+P[11][2]*t22-P[11][3]*t25);
- Kfusion[12] = t77*(-P[12][4]*t3+P[12][5]*t8+P[12][0]*t15+P[12][6]*t12+P[12][1]*t18+P[12][2]*t22-P[12][3]*t25);
- } else {
- // zero indexes 10 to 12 = 3*4 bytes
- memset(&Kfusion[10], 0, 12);
- }
- if (!inhibitDelVelBiasStates) {
- Kfusion[13] = t77*(-P[13][4]*t3+P[13][5]*t8+P[13][0]*t15+P[13][6]*t12+P[13][1]*t18+P[13][2]*t22-P[13][3]*t25);
- Kfusion[14] = t77*(-P[14][4]*t3+P[14][5]*t8+P[14][0]*t15+P[14][6]*t12+P[14][1]*t18+P[14][2]*t22-P[14][3]*t25);
- Kfusion[15] = t77*(-P[15][4]*t3+P[15][5]*t8+P[15][0]*t15+P[15][6]*t12+P[15][1]*t18+P[15][2]*t22-P[15][3]*t25);
- } else {
- // zero indexes 13 to 15 = 3*4 bytes
- memset(&Kfusion[13], 0, 12);
- }
- if (!inhibitMagStates) {
- Kfusion[16] = t77*(-P[16][4]*t3+P[16][5]*t8+P[16][0]*t15+P[16][6]*t12+P[16][1]*t18+P[16][2]*t22-P[16][3]*t25);
- Kfusion[17] = t77*(-P[17][4]*t3+P[17][5]*t8+P[17][0]*t15+P[17][6]*t12+P[17][1]*t18+P[17][2]*t22-P[17][3]*t25);
- Kfusion[18] = t77*(-P[18][4]*t3+P[18][5]*t8+P[18][0]*t15+P[18][6]*t12+P[18][1]*t18+P[18][2]*t22-P[18][3]*t25);
- Kfusion[19] = t77*(-P[19][4]*t3+P[19][5]*t8+P[19][0]*t15+P[19][6]*t12+P[19][1]*t18+P[19][2]*t22-P[19][3]*t25);
- Kfusion[20] = t77*(-P[20][4]*t3+P[20][5]*t8+P[20][0]*t15+P[20][6]*t12+P[20][1]*t18+P[20][2]*t22-P[20][3]*t25);
- Kfusion[21] = t77*(-P[21][4]*t3+P[21][5]*t8+P[21][0]*t15+P[21][6]*t12+P[21][1]*t18+P[21][2]*t22-P[21][3]*t25);
- } else {
- // zero indexes 16 to 21 = 6*4 bytes
- memset(&Kfusion[16], 0, 24);
- }
- if (!inhibitWindStates) {
- Kfusion[22] = t77*(-P[22][4]*t3+P[22][5]*t8+P[22][0]*t15+P[22][6]*t12+P[22][1]*t18+P[22][2]*t22-P[22][3]*t25);
- Kfusion[23] = t77*(-P[23][4]*t3+P[23][5]*t8+P[23][0]*t15+P[23][6]*t12+P[23][1]*t18+P[23][2]*t22-P[23][3]*t25);
- } else {
- // zero indexes 22 to 23 = 2*4 bytes
- memset(&Kfusion[22], 0, 8);
- }
- } else if (obsIndex == 2) {
- // calculate Z axis observation Jacobian
- H_VEL[0] = q0*vd*2.0f-q1*ve*2.0f+q2*vn*2.0f;
- H_VEL[1] = q1*vd*-2.0f-q0*ve*2.0f+q3*vn*2.0f;
- H_VEL[2] = q2*vd*-2.0f+q3*ve*2.0f+q0*vn*2.0f;
- H_VEL[3] = q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f;
- H_VEL[4] = q0*q2*2.0f+q1*q3*2.0f;
- H_VEL[5] = q0*q1*-2.0f+q2*q3*2.0f;
- H_VEL[6] = q0*q0-q1*q1-q2*q2+q3*q3;
- for (uint8_t index = 7; index < 24; index++) {
- H_VEL[index] = 0.0f;
- }
- // calculate intermediate expressions for Z axis Kalman gains
- float R_VEL = sq(bodyOdmDataDelayed.velErr);
- float t2 = q0*q2*2.0f;
- float t3 = q1*q3*2.0f;
- float t4 = t2+t3;
- float t5 = q0*q0;
- float t6 = q1*q1;
- float t7 = q2*q2;
- float t8 = q3*q3;
- float t9 = t5-t6-t7+t8;
- float t10 = q0*q1*2.0f;
- float t25 = q2*q3*2.0f;
- float t11 = t10-t25;
- float t12 = q0*vd*2.0f;
- float t13 = q2*vn*2.0f;
- float t26 = q1*ve*2.0f;
- float t14 = t12+t13-t26;
- float t15 = q1*vd*2.0f;
- float t16 = q0*ve*2.0f;
- float t27 = q3*vn*2.0f;
- float t17 = t15+t16-t27;
- float t18 = q3*ve*2.0f;
- float t19 = q0*vn*2.0f;
- float t28 = q2*vd*2.0f;
- float t20 = t18+t19-t28;
- float t21 = q3*vd*2.0f;
- float t22 = q2*ve*2.0f;
- float t23 = q1*vn*2.0f;
- float t24 = t21+t22+t23;
- float t29 = P[0][0]*t14;
- float t30 = P[6][4]*t9;
- float t31 = P[4][4]*t4;
- float t32 = P[0][4]*t14;
- float t33 = P[2][4]*t20;
- float t34 = P[3][4]*t24;
- float t78 = P[5][4]*t11;
- float t79 = P[1][4]*t17;
- float t35 = t30+t31+t32+t33+t34-t78-t79;
- float t36 = t4*t35;
- float t37 = P[6][5]*t9;
- float t38 = P[4][5]*t4;
- float t39 = P[0][5]*t14;
- float t40 = P[2][5]*t20;
- float t41 = P[3][5]*t24;
- float t80 = P[5][5]*t11;
- float t81 = P[1][5]*t17;
- float t42 = t37+t38+t39+t40+t41-t80-t81;
- float t43 = P[6][0]*t9;
- float t44 = P[4][0]*t4;
- float t45 = P[2][0]*t20;
- float t46 = P[3][0]*t24;
- float t83 = P[5][0]*t11;
- float t84 = P[1][0]*t17;
- float t47 = t29+t43+t44+t45+t46-t83-t84;
- float t48 = t14*t47;
- float t49 = P[6][1]*t9;
- float t50 = P[4][1]*t4;
- float t51 = P[0][1]*t14;
- float t52 = P[2][1]*t20;
- float t53 = P[3][1]*t24;
- float t85 = P[5][1]*t11;
- float t86 = P[1][1]*t17;
- float t54 = t49+t50+t51+t52+t53-t85-t86;
- float t55 = P[6][2]*t9;
- float t56 = P[4][2]*t4;
- float t57 = P[0][2]*t14;
- float t58 = P[2][2]*t20;
- float t59 = P[3][2]*t24;
- float t88 = P[5][2]*t11;
- float t89 = P[1][2]*t17;
- float t60 = t55+t56+t57+t58+t59-t88-t89;
- float t61 = t20*t60;
- float t62 = P[6][3]*t9;
- float t63 = P[4][3]*t4;
- float t64 = P[0][3]*t14;
- float t65 = P[2][3]*t20;
- float t66 = P[3][3]*t24;
- float t90 = P[5][3]*t11;
- float t91 = P[1][3]*t17;
- float t67 = t62+t63+t64+t65+t66-t90-t91;
- float t68 = t24*t67;
- float t69 = P[6][6]*t9;
- float t70 = P[4][6]*t4;
- float t71 = P[0][6]*t14;
- float t72 = P[2][6]*t20;
- float t73 = P[3][6]*t24;
- float t92 = P[5][6]*t11;
- float t93 = P[1][6]*t17;
- float t74 = t69+t70+t71+t72+t73-t92-t93;
- float t75 = t9*t74;
- float t82 = t11*t42;
- float t87 = t17*t54;
- float t76 = R_VEL+t36+t48+t61+t68+t75-t82-t87;
- float t77;
- // calculate innovation variance for Z axis observation and protect against a badly conditioned calculation
- if (t76 > R_VEL) {
- t77 = 1.0f/t76;
- faultStatus.bad_zvel = false;
- } else {
- t76 = R_VEL;
- t77 = 1.0f/R_VEL;
- faultStatus.bad_zvel = true;
- return;
- }
- varInnovBodyVel[2] = t77;
- // calculate innovation for Z axis observation
- innovBodyVel[2] = bodyVelPred.z - bodyOdmDataDelayed.vel.z;
- // calculate Kalman gains for X-axis observation
- Kfusion[0] = t77*(t29+P[0][4]*t4+P[0][6]*t9-P[0][5]*t11-P[0][1]*t17+P[0][2]*t20+P[0][3]*t24);
- Kfusion[1] = t77*(P[1][4]*t4+P[1][0]*t14+P[1][6]*t9-P[1][5]*t11-P[1][1]*t17+P[1][2]*t20+P[1][3]*t24);
- Kfusion[2] = t77*(t58+P[2][4]*t4+P[2][0]*t14+P[2][6]*t9-P[2][5]*t11-P[2][1]*t17+P[2][3]*t24);
- Kfusion[3] = t77*(t66+P[3][4]*t4+P[3][0]*t14+P[3][6]*t9-P[3][5]*t11-P[3][1]*t17+P[3][2]*t20);
- Kfusion[4] = t77*(t31+P[4][0]*t14+P[4][6]*t9-P[4][5]*t11-P[4][1]*t17+P[4][2]*t20+P[4][3]*t24);
- Kfusion[5] = t77*(-t80+P[5][4]*t4+P[5][0]*t14+P[5][6]*t9-P[5][1]*t17+P[5][2]*t20+P[5][3]*t24);
- Kfusion[6] = t77*(t69+P[6][4]*t4+P[6][0]*t14-P[6][5]*t11-P[6][1]*t17+P[6][2]*t20+P[6][3]*t24);
- Kfusion[7] = t77*(P[7][4]*t4+P[7][0]*t14+P[7][6]*t9-P[7][5]*t11-P[7][1]*t17+P[7][2]*t20+P[7][3]*t24);
- Kfusion[8] = t77*(P[8][4]*t4+P[8][0]*t14+P[8][6]*t9-P[8][5]*t11-P[8][1]*t17+P[8][2]*t20+P[8][3]*t24);
- Kfusion[9] = t77*(P[9][4]*t4+P[9][0]*t14+P[9][6]*t9-P[9][5]*t11-P[9][1]*t17+P[9][2]*t20+P[9][3]*t24);
- if (!inhibitDelAngBiasStates) {
- Kfusion[10] = t77*(P[10][4]*t4+P[10][0]*t14+P[10][6]*t9-P[10][5]*t11-P[10][1]*t17+P[10][2]*t20+P[10][3]*t24);
- Kfusion[11] = t77*(P[11][4]*t4+P[11][0]*t14+P[11][6]*t9-P[11][5]*t11-P[11][1]*t17+P[11][2]*t20+P[11][3]*t24);
- Kfusion[12] = t77*(P[12][4]*t4+P[12][0]*t14+P[12][6]*t9-P[12][5]*t11-P[12][1]*t17+P[12][2]*t20+P[12][3]*t24);
- } else {
- // zero indexes 10 to 12 = 3*4 bytes
- memset(&Kfusion[10], 0, 12);
- }
- if (!inhibitDelVelBiasStates) {
- Kfusion[13] = t77*(P[13][4]*t4+P[13][0]*t14+P[13][6]*t9-P[13][5]*t11-P[13][1]*t17+P[13][2]*t20+P[13][3]*t24);
- Kfusion[14] = t77*(P[14][4]*t4+P[14][0]*t14+P[14][6]*t9-P[14][5]*t11-P[14][1]*t17+P[14][2]*t20+P[14][3]*t24);
- Kfusion[15] = t77*(P[15][4]*t4+P[15][0]*t14+P[15][6]*t9-P[15][5]*t11-P[15][1]*t17+P[15][2]*t20+P[15][3]*t24);
- } else {
- // zero indexes 13 to 15 = 3*4 bytes
- memset(&Kfusion[13], 0, 12);
- }
- if (!inhibitMagStates) {
- Kfusion[16] = t77*(P[16][4]*t4+P[16][0]*t14+P[16][6]*t9-P[16][5]*t11-P[16][1]*t17+P[16][2]*t20+P[16][3]*t24);
- Kfusion[17] = t77*(P[17][4]*t4+P[17][0]*t14+P[17][6]*t9-P[17][5]*t11-P[17][1]*t17+P[17][2]*t20+P[17][3]*t24);
- Kfusion[18] = t77*(P[18][4]*t4+P[18][0]*t14+P[18][6]*t9-P[18][5]*t11-P[18][1]*t17+P[18][2]*t20+P[18][3]*t24);
- Kfusion[19] = t77*(P[19][4]*t4+P[19][0]*t14+P[19][6]*t9-P[19][5]*t11-P[19][1]*t17+P[19][2]*t20+P[19][3]*t24);
- Kfusion[20] = t77*(P[20][4]*t4+P[20][0]*t14+P[20][6]*t9-P[20][5]*t11-P[20][1]*t17+P[20][2]*t20+P[20][3]*t24);
- Kfusion[21] = t77*(P[21][4]*t4+P[21][0]*t14+P[21][6]*t9-P[21][5]*t11-P[21][1]*t17+P[21][2]*t20+P[21][3]*t24);
- } else {
- // zero indexes 16 to 21 = 6*4 bytes
- memset(&Kfusion[16], 0, 24);
- }
- if (!inhibitWindStates) {
- Kfusion[22] = t77*(P[22][4]*t4+P[22][0]*t14+P[22][6]*t9-P[22][5]*t11-P[22][1]*t17+P[22][2]*t20+P[22][3]*t24);
- Kfusion[23] = t77*(P[23][4]*t4+P[23][0]*t14+P[23][6]*t9-P[23][5]*t11-P[23][1]*t17+P[23][2]*t20+P[23][3]*t24);
- } else {
- // zero indexes 22 to 23 = 2*4 bytes
- memset(&Kfusion[22], 0, 8);
- }
- } else {
- return;
- }
- // calculate the innovation consistency test ratio
- // TODO add tuning parameter for gate
- bodyVelTestRatio[obsIndex] = sq(innovBodyVel[obsIndex]) / (sq(5.0f) * varInnovBodyVel[obsIndex]);
- // Check the innovation for consistency and don't fuse if out of bounds
- // TODO also apply angular velocity magnitude check
- if ((bodyVelTestRatio[obsIndex]) < 1.0f) {
- // record the last time observations were accepted for fusion
- prevBodyVelFuseTime_ms = imuSampleTime_ms;
- // notify first time only
- if (!bodyVelFusionActive) {
- bodyVelFusionActive = true;
- gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u fusing odometry",(unsigned)imu_index);
- }
- // correct the covariance P = (I - K*H)*P
- // take advantage of the empty columns in KH to reduce the
- // number of operations
- for (unsigned i = 0; i<=stateIndexLim; i++) {
- for (unsigned j = 0; j<=6; j++) {
- KH[i][j] = Kfusion[i] * H_VEL[j];
- }
- for (unsigned j = 7; j<=stateIndexLim; j++) {
- KH[i][j] = 0.0f;
- }
- }
- for (unsigned j = 0; j<=stateIndexLim; j++) {
- for (unsigned i = 0; i<=stateIndexLim; i++) {
- ftype res = 0;
- res += KH[i][0] * P[0][j];
- res += KH[i][1] * P[1][j];
- res += KH[i][2] * P[2][j];
- res += KH[i][3] * P[3][j];
- res += KH[i][4] * P[4][j];
- res += KH[i][5] * P[5][j];
- res += KH[i][6] * P[6][j];
- KHP[i][j] = res;
- }
- }
- // Check that we are not going to drive any variances negative and skip the update if so
- bool healthyFusion = true;
- for (uint8_t i= 0; i<=stateIndexLim; i++) {
- if (KHP[i][i] > P[i][i]) {
- healthyFusion = false;
- }
- }
- if (healthyFusion) {
- // update the covariance matrix
- for (uint8_t i= 0; i<=stateIndexLim; i++) {
- for (uint8_t j= 0; j<=stateIndexLim; j++) {
- P[i][j] = P[i][j] - KHP[i][j];
- }
- }
- // force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
- ForceSymmetry();
- ConstrainVariances();
- // correct the state vector
- for (uint8_t j= 0; j<=stateIndexLim; j++) {
- statesArray[j] = statesArray[j] - Kfusion[j] * innovBodyVel[obsIndex];
- }
- stateStruct.quat.normalize();
- } else {
- // record bad axis
- if (obsIndex == 0) {
- faultStatus.bad_xvel = true;
- } else if (obsIndex == 1) {
- faultStatus.bad_yvel = true;
- } else if (obsIndex == 2) {
- faultStatus.bad_zvel = true;
- }
- }
- }
- }
- }
- // select fusion of body odometry measurements
- void NavEKF3_core::SelectBodyOdomFusion()
- {
- // Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz
- // If so, don't fuse measurements on this time step to reduce frame over-runs
- // Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements
- if (magFusePerformed && (dtIMUavg < 0.005f) && !bodyVelFusionDelayed) {
- bodyVelFusionDelayed = true;
- return;
- } else {
- bodyVelFusionDelayed = false;
- }
- // Check for data at the fusion time horizon
- if (storedBodyOdm.recall(bodyOdmDataDelayed, imuDataDelayed.time_ms)) {
- // start performance timer
- hal.util->perf_begin(_perf_FuseBodyOdom);
- usingWheelSensors = false;
- // Fuse data into the main filter
- FuseBodyVel();
- // stop the performance timer
- hal.util->perf_end(_perf_FuseBodyOdom);
- } else if (storedWheelOdm.recall(wheelOdmDataDelayed, imuDataDelayed.time_ms)) {
- // check if the delta time is too small to calculate a velocity
- if (wheelOdmDataDelayed.delTime > EKF_TARGET_DT) {
- // get the forward velocity
- float fwdSpd = wheelOdmDataDelayed.delAng * wheelOdmDataDelayed.radius * (1.0f / wheelOdmDataDelayed.delTime);
- // get the unit vector from the projection of the X axis onto the horizontal
- Vector3f unitVec;
- unitVec.x = prevTnb.a.x;
- unitVec.y = prevTnb.a.y;
- unitVec.z = 0.0f;
- unitVec.normalize();
- // multiply by forward speed to get velocity vector measured by wheel encoders
- Vector3f velNED = unitVec * fwdSpd;
- // This is a hack to enable use of the existing body frame velocity fusion method
- // TODO write a dedicated observation model for wheel encoders
- usingWheelSensors = true;
- bodyOdmDataDelayed.vel = prevTnb * velNED;
- bodyOdmDataDelayed.body_offset = wheelOdmDataDelayed.hub_offset;
- bodyOdmDataDelayed.velErr = frontend->_wencOdmVelErr;
- // Fuse data into the main filter
- FuseBodyVel();
- }
- }
- }
|