1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- function quat = AlignHeading( ...
- quat, ... % quaternion state vector
- magMea, ... % body frame magnetic flux measurements
- declination) % Estimated magnetic field delination at current location
- % Calculate the predicted magnetic declination
- Tbn = Quat2Tbn(quat);
- magMeasNED = Tbn*magMea;
- predDec = atan2(magMeasNED(2),magMeasNED(1));
- % Calculate the measurement innovation
- innovation = predDec - declination;
- if (innovation > pi)
- innovation = innovation - 2*pi;
- elseif (innovation < -pi)
- innovation = innovation + 2*pi;
- end
- % form the NED rotation vector
- deltaRotNED = -[0;0;innovation];
- % rotate into body axes
- % Calculate the body to nav cosine matrix
- Tbn = Quat2Tbn(quat);
- deltaRotBody = transpose(Tbn)*deltaRotNED;
- % Convert the error rotation vector to its equivalent quaternion
- % error = truth - estimate
- rotationMag = abs(innovation);
- if rotationMag<1e-6
- deltaQuat = single([1;0;0;0]);
- else
- deltaQuat = [cos(0.5*rotationMag); [deltaRotBody(1);deltaRotBody(2);deltaRotBody(3)]/rotationMag*sin(0.5*rotationMag)];
- end
- % Update the quaternion states by rotating from the previous attitude through
- % the delta angle rotation quaternion
- quat = [quat(1)*deltaQuat(1)-transpose(quat(2:4))*deltaQuat(2:4); quat(1)*deltaQuat(2:4) + deltaQuat(1)*quat(2:4) + cross(quat(2:4),deltaQuat(2:4))];
- % normalise the updated quaternion states
- quatMag = sqrt(quat(1)^2 + quat(2)^2 + quat(3)^2 + quat(4)^2);
- if (quatMag > 1e-12)
- quat = quat / quatMag;
- end
- end
|