123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600 |
- #include <AP_HAL/AP_HAL.h>
- #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || \
- CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 || \
- CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH || \
- CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DARK || \
- CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXFMINI
- #include <assert.h>
- #include <errno.h>
- #include <fcntl.h>
- #include <pthread.h>
- #include <stdint.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <sys/ioctl.h>
- #include <sys/mman.h>
- #include <sys/stat.h>
- #include <sys/time.h>
- #include <sys/types.h>
- #include <time.h>
- #include <unistd.h>
- #include "GPIO.h"
- #include "RCInput_RPI.h"
- #include "Util_RPI.h"
- #ifdef DEBUG
- #define debug(fmt, args ...) do { fprintf(stderr,"[RCInput_RPI]: %s:%d: " fmt, __FUNCTION__, __LINE__, ## args); } while (0)
- #else
- #define debug(fmt, args ...)
- #endif
- //Parametres
- #define RCIN_RPI_BUFFER_LENGTH 4
- #define RCIN_RPI_SAMPLE_FREQ 125
- #define RCIN_RPI_DMA_CHANNEL 0
- #define RCIN_RPI_MAX_SIZE_LINE 50
- #define RCIN_RPI_MAX_COUNTER (RCIN_RPI_BUFFER_LENGTH * PAGE_SIZE * 2) // 1 circle_buffer
- #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH
- #define RCIN_RPI_SIG_HIGH 0
- #define RCIN_RPI_SIG_LOW 1
- // Each gpio stands for a rcinput channel,
- // the first one in RcChnGpioTbl is channel 1 in receiver
- static uint16_t RcChnGpioTbl[RCIN_RPI_CHN_NUM] = {
- RPI_GPIO_5, RPI_GPIO_6, RPI_GPIO_12,
- RPI_GPIO_13, RPI_GPIO_19, RPI_GPIO_20,
- RPI_GPIO_21, RPI_GPIO_26
- };
- #else
- #define RCIN_RPI_SIG_HIGH 1
- #define RCIN_RPI_SIG_LOW 0
- static uint16_t RcChnGpioTbl[RCIN_RPI_CHN_NUM] = {
- #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO
- #define PAGE_SIZE (4*1024)
- NAVIO_GPIO_PPM_IN
- #else
- RPI_GPIO_4
- #endif
- };
- #endif // CONFIG_HAL_BOARD_SUBTYPE
- //Memory Addresses
- #define RCIN_RPI_RPI1_DMA_BASE 0x20007000
- #define RCIN_RPI_RPI1_CLK_BASE 0x20101000
- #define RCIN_RPI_RPI1_PCM_BASE 0x20203000
- #define RCIN_RPI_RPI2_DMA_BASE 0x3F007000
- #define RCIN_RPI_RPI2_CLK_BASE 0x3F101000
- #define RCIN_RPI_RPI2_PCM_BASE 0x3F203000
- #define RCIN_RPI_GPIO_LEV0_ADDR 0x7e200034
- #define RCIN_RPI_DMA_LEN 0x1000
- #define RCIN_RPI_CLK_LEN 0xA8
- #define RCIN_RPI_PCM_LEN 0x24
- #define RCIN_RPI_TIMER_BASE 0x7e003004
- #define RCIN_RPI_DMA_SRC_INC (1<<8)
- #define RCIN_RPI_DMA_DEST_INC (1<<4)
- #define RCIN_RPI_DMA_NO_WIDE_BURSTS (1<<26)
- #define RCIN_RPI_DMA_WAIT_RESP (1<<3)
- #define RCIN_RPI_DMA_D_DREQ (1<<6)
- #define RCIN_RPI_DMA_PER_MAP(x) ((x)<<16)
- #define RCIN_RPI_DMA_END (1<<1)
- #define RCIN_RPI_DMA_RESET (1<<31)
- #define RCIN_RPI_DMA_INT (1<<2)
- #define RCIN_RPI_DMA_CS (0x00/4)
- #define RCIN_RPI_DMA_CONBLK_AD (0x04/4)
- #define RCIN_RPI_DMA_DEBUG (0x20/4)
- #define RCIN_RPI_PCM_CS_A (0x00/4)
- #define RCIN_RPI_PCM_FIFO_A (0x04/4)
- #define RCIN_RPI_PCM_MODE_A (0x08/4)
- #define RCIN_RPI_PCM_RXC_A (0x0c/4)
- #define RCIN_RPI_PCM_TXC_A (0x10/4)
- #define RCIN_RPI_PCM_DREQ_A (0x14/4)
- #define RCIN_RPI_PCM_INTEN_A (0x18/4)
- #define RCIN_RPI_PCM_INT_STC_A (0x1c/4)
- #define RCIN_RPI_PCM_GRAY (0x20/4)
- #define RCIN_RPI_PCMCLK_CNTL 38
- #define RCIN_RPI_PCMCLK_DIV 39
- extern const AP_HAL::HAL& hal;
- using namespace Linux;
- volatile uint32_t *RCInput_RPI::pcm_reg;
- volatile uint32_t *RCInput_RPI::clk_reg;
- volatile uint32_t *RCInput_RPI::dma_reg;
- Memory_table::Memory_table()
- {
- _page_count = 0;
- }
- // Init Memory table
- Memory_table::Memory_table(uint32_t page_count, int version)
- {
- uint32_t i;
- int fdMem, file;
- // Cache coherent adresses depends on RPI's version
- uint32_t bus = version == 1 ? 0x40000000 : 0xC0000000;
- uint64_t pageInfo;
- void *offset;
- _virt_pages = (void **)calloc(page_count, sizeof(void *));
- _phys_pages = (void **)calloc(page_count, sizeof(void *));
- _page_count = page_count;
- if ((fdMem = open("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC)) < 0) {
- fprintf(stderr, "Failed to open /dev/mem\n");
- exit(-1);
- }
- if ((file = open("/proc/self/pagemap", O_RDWR | O_SYNC | O_CLOEXEC)) < 0) {
- fprintf(stderr, "Failed to open /proc/self/pagemap\n");
- exit(-1);
- }
- // Magic to determine the physical address for this page:
- offset = mmap(0, _page_count * PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS | MAP_NORESERVE | MAP_LOCKED, -1, 0);
- lseek(file, ((uintptr_t)offset) / PAGE_SIZE * 8, SEEK_SET);
- // Get list of available cache coherent physical addresses
- for (i = 0; i < _page_count; i++) {
- _virt_pages[i] = mmap(0, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS | MAP_NORESERVE | MAP_LOCKED, -1, 0);
- if (::read(file, &pageInfo, 8) < 8) {
- fprintf(stderr, "Failed to read pagemap\n");
- exit(-1);
- }
- _phys_pages[i] = (void *)((uintptr_t)(pageInfo * PAGE_SIZE) | bus);
- }
- // Map physical addresses to virtual memory
- for (i = 0; i < _page_count; i++) {
- munmap(_virt_pages[i], PAGE_SIZE);
- _virt_pages[i] = mmap(_virt_pages[i], PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED | MAP_NORESERVE | MAP_LOCKED, fdMem, ((uintptr_t)_phys_pages[i] & (version == 1 ? 0xFFFFFFFF : ~bus)));
- memset(_virt_pages[i], 0xee, PAGE_SIZE);
- }
- close(file);
- close(fdMem);
- }
- Memory_table::~Memory_table()
- {
- free(_virt_pages);
- free(_phys_pages);
- }
- // This function returns physical address with help of pointer, which is offset
- // from the beginning of the buffer.
- void *Memory_table::get_page(void **const pages, uint32_t addr) const
- {
- if (addr >= PAGE_SIZE * _page_count) {
- return nullptr;
- }
- return (uint8_t *)pages[(uint32_t)addr / 4096] + addr % 4096;
- }
- //Get virtual address from the corresponding physical address from memory_table.
- void *Memory_table::get_virt_addr(const uint32_t phys_addr) const
- {
- // FIXME: Can't the address be calculated directly?
- // FIXME: if the address room in _phys_pages is not fragmented one may avoid
- // a complete loop ..
- uint32_t i = 0;
- for (; i < _page_count; i++) {
- if ((uintptr_t)_phys_pages[i] == (((uintptr_t)phys_addr) & 0xFFFFF000)) {
- return (void *)((uintptr_t)_virt_pages[i] + (phys_addr & 0xFFF));
- }
- }
- return nullptr;
- }
- // This function returns offset from the beginning of the buffer using virtual
- // address and memory_table.
- uint32_t Memory_table::get_offset(void ** const pages, const uint32_t addr) const
- {
- uint32_t i = 0;
- for (; i < _page_count; i++) {
- if ((uintptr_t) pages[i] == (addr & 0xFFFFF000) ) {
- return (i*PAGE_SIZE + (addr & 0xFFF));
- }
- }
- return -1;
- }
- // How many bytes are available for reading in circle buffer?
- uint32_t Memory_table::bytes_available(const uint32_t read_addr, const uint32_t write_addr) const
- {
- if (write_addr > read_addr) {
- return (write_addr - read_addr);
- } else {
- return _page_count * PAGE_SIZE - (read_addr - write_addr);
- }
- }
- uint32_t Memory_table::get_page_count() const
- {
- return _page_count;
- }
- // Physical addresses of peripheral depends on Raspberry Pi's version
- void RCInput_RPI::set_physical_addresses(int version)
- {
- if (version == 1) {
- dma_base = RCIN_RPI_RPI1_DMA_BASE;
- clk_base = RCIN_RPI_RPI1_CLK_BASE;
- pcm_base = RCIN_RPI_RPI1_PCM_BASE;
- } else if (version == 2) {
- dma_base = RCIN_RPI_RPI2_DMA_BASE;
- clk_base = RCIN_RPI_RPI2_CLK_BASE;
- pcm_base = RCIN_RPI_RPI2_PCM_BASE;
- }
- }
- // Map peripheral to virtual memory
- void *RCInput_RPI::map_peripheral(uint32_t base, uint32_t len)
- {
- int fd = open("/dev/mem", O_RDWR | O_CLOEXEC);
- void *vaddr;
- if (fd < 0) {
- printf("Failed to open /dev/mem: %m\n");
- return nullptr;
- }
- vaddr = mmap(nullptr, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, base);
- if (vaddr == MAP_FAILED) {
- printf("rpio-pwm: Failed to map peripheral at 0x%08x: %m\n", base);
- }
- close(fd);
- return vaddr;
- }
- // Method to init DMA control block
- void RCInput_RPI::init_dma_cb(dma_cb_t **cbp, uint32_t mode, uint32_t source, uint32_t dest, uint32_t length, uint32_t stride, uint32_t next_cb)
- {
- (*cbp)->info = mode;
- (*cbp)->src = source;
- (*cbp)->dst = dest;
- (*cbp)->length = length;
- (*cbp)->next = next_cb;
- (*cbp)->stride = stride;
- }
- void RCInput_RPI::stop_dma()
- {
- dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = 0;
- }
- /* We need to be sure that the DMA is stopped upon termination */
- void RCInput_RPI::termination_handler(int signum)
- {
- stop_dma();
- AP_HAL::panic("Interrupted: %s", strsignal(signum));
- }
- // This function is used to init DMA control blocks (setting sampling GPIO
- // register, destination adresses, synchronization)
- void RCInput_RPI::init_ctrl_data()
- {
- uint32_t phys_fifo_addr;
- uint32_t dest = 0;
- uint32_t cbp = 0;
- dma_cb_t *cbp_curr;
- // Set fifo addr (for delay)
- phys_fifo_addr = ((pcm_base + 0x04) & 0x00FFFFFF) | 0x7e000000;
- // Init dma control blocks.
- /* We are transferring 8 bytes of GPIO register. Every 7th iteration we are
- sampling TIMER register, which length is 8 bytes. So, for every 7 samples of GPIO we need
- 7 * 8 + 8 = 64 bytes of buffer. Value 7 was selected specially to have a 64-byte "block"
- TIMER - GPIO. So, we have integer count of such "blocks" at one virtual page. (4096 / 64 = 64
- "blocks" per page. As minimum, we must have 2 virtual pages of buffer (to have integer count of
- vitual pages for control blocks): for every 7 iterations (64 bytes of buffer) we need 7 control blocks for GPIO
- sampling, 7 control blocks for setting frequency and 1 control block for sampling timer, so,
- we need 7 + 7 + 1 = 15 control blocks. For integer value, we need 15 pages of control blocks.
- Each control block length is 32 bytes. In 15 pages we will have (15 * 4096 / 32) = 15 * 128 control
- blocks. 15 * 128 control blocks = 64 * 128 bytes of buffer = 2 pages of buffer.
- So, for 7 * 64 * 2 iteration we init DMA for sampling GPIO
- and timer to ((7 * 8 + 8) * 64 * 2) = 8192 bytes = 2 pages of buffer.
- */
- for (uint32_t i = 0; i < 7 * 128 * RCIN_RPI_BUFFER_LENGTH; i++) {
- // Transfer timer every 7th sample
- if (i % 7 == 0) {
- cbp_curr = (dma_cb_t*)con_blocks->get_page(con_blocks->_virt_pages, cbp);
- init_dma_cb(&cbp_curr, RCIN_RPI_DMA_NO_WIDE_BURSTS | RCIN_RPI_DMA_WAIT_RESP | RCIN_RPI_DMA_DEST_INC | RCIN_RPI_DMA_SRC_INC, RCIN_RPI_TIMER_BASE,
- (uintptr_t)circle_buffer->get_page(circle_buffer->_phys_pages, dest),
- 8,
- 0,
- (uintptr_t)con_blocks->get_page(con_blocks->_phys_pages,
- cbp + sizeof(dma_cb_t)));
- dest += 8;
- cbp += sizeof(dma_cb_t);
- }
- // Transfer GPIO (8 bytes)
- cbp_curr = (dma_cb_t *)con_blocks->get_page(con_blocks->_virt_pages, cbp);
- init_dma_cb(&cbp_curr, RCIN_RPI_DMA_NO_WIDE_BURSTS | RCIN_RPI_DMA_WAIT_RESP, RCIN_RPI_GPIO_LEV0_ADDR,
- (uintptr_t)circle_buffer->get_page(circle_buffer->_phys_pages, dest),
- 8,
- 0,
- (uintptr_t)con_blocks->get_page(con_blocks->_phys_pages,
- cbp + sizeof(dma_cb_t)));
- dest += 8;
- cbp += sizeof(dma_cb_t);
- // Delay (for setting sampling frequency)
- /* DMA is waiting data request signal (DREQ) from PCM. PCM is set for 1.25 MhZ freqency, so,
- each sample of GPIO is limited by writing to PCA queue.
- */
- cbp_curr = (dma_cb_t *)con_blocks->get_page(con_blocks->_virt_pages, cbp);
- init_dma_cb(&cbp_curr, RCIN_RPI_DMA_NO_WIDE_BURSTS | RCIN_RPI_DMA_WAIT_RESP | RCIN_RPI_DMA_D_DREQ | RCIN_RPI_DMA_PER_MAP(2),
- RCIN_RPI_TIMER_BASE, phys_fifo_addr,
- 4,
- 0,
- (uintptr_t)con_blocks->get_page(con_blocks->_phys_pages,
- cbp + sizeof(dma_cb_t)));
- cbp += sizeof(dma_cb_t);
- }
- //Make last control block point to the first (to make circle)
- cbp -= sizeof(dma_cb_t);
- ((dma_cb_t *)con_blocks->get_page(con_blocks->_virt_pages, cbp))->next = (uintptr_t)con_blocks->get_page(con_blocks->_phys_pages, 0);
- }
- /*Initialise PCM
- See BCM2835 documentation:
- http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
- */
- void RCInput_RPI::init_PCM()
- {
- pcm_reg[RCIN_RPI_PCM_CS_A] = 1; // Disable Rx+Tx, Enable PCM block
- hal.scheduler->delay_microseconds(100);
- clk_reg[RCIN_RPI_PCMCLK_CNTL] = 0x5A000006; // Source=PLLD (500MHz)
- hal.scheduler->delay_microseconds(100);
- clk_reg[RCIN_RPI_PCMCLK_DIV] = 0x5A000000 | ((50000/RCIN_RPI_SAMPLE_FREQ)<<12); // Set pcm div. If we need to configure DMA frequency.
- hal.scheduler->delay_microseconds(100);
- clk_reg[RCIN_RPI_PCMCLK_CNTL] = 0x5A000016; // Source=PLLD and enable
- hal.scheduler->delay_microseconds(100);
- pcm_reg[RCIN_RPI_PCM_TXC_A] = 0<<31 | 1<<30 | 0<<20 | 0<<16; // 1 channel, 8 bits
- hal.scheduler->delay_microseconds(100);
- pcm_reg[RCIN_RPI_PCM_MODE_A] = (10 - 1) << 10; //PCM mode
- hal.scheduler->delay_microseconds(100);
- pcm_reg[RCIN_RPI_PCM_CS_A] |= 1<<4 | 1<<3; // Clear FIFOs
- hal.scheduler->delay_microseconds(100);
- pcm_reg[RCIN_RPI_PCM_DREQ_A] = 64<<24 | 64<<8; // DMA Req when one slot is free?
- hal.scheduler->delay_microseconds(100);
- pcm_reg[RCIN_RPI_PCM_CS_A] |= 1<<9; // Enable DMA
- hal.scheduler->delay_microseconds(100);
- pcm_reg[RCIN_RPI_PCM_CS_A] |= 1<<2; // Enable Tx
- hal.scheduler->delay_microseconds(100);
- }
- /*Initialise DMA
- See BCM2835 documentation:
- http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
- */
- void RCInput_RPI::init_DMA()
- {
- dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = RCIN_RPI_DMA_RESET; //Reset DMA
- hal.scheduler->delay_microseconds(100);
- dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = RCIN_RPI_DMA_INT | RCIN_RPI_DMA_END;
- dma_reg[RCIN_RPI_DMA_CONBLK_AD | RCIN_RPI_DMA_CHANNEL << 8] = reinterpret_cast<uintptr_t>(con_blocks->get_page(con_blocks->_phys_pages, 0));//Set first control block address
- dma_reg[RCIN_RPI_DMA_DEBUG | RCIN_RPI_DMA_CHANNEL << 8] = 7; // clear debug error flags
- dma_reg[RCIN_RPI_DMA_CS | RCIN_RPI_DMA_CHANNEL << 8] = 0x10880001; // go, mid priority, wait for outstanding writes
- }
- // We must stop DMA when the process is killed
- void RCInput_RPI::set_sigaction()
- {
- struct sigaction sa, sa_old;
- memset(&sa_old, 0, sizeof(sa));
- memset(&sa, 0, sizeof(sa));
- /* Ignore signals */
- sa.sa_handler = SIG_IGN;
- sigaction(SIGWINCH, &sa, nullptr);
- sigaction(SIGTTOU, &sa, nullptr);
- sigaction(SIGTTIN, &sa, nullptr);
- /*
- * Catch all other signals to ensure DMA is disabled - some of them may
- * already be handled elsewhere in cases we consider normal termination.
- * In those cases the teardown() method must be called.
- */
- for (int i = 0; i < NSIG; i++) {
- sigaction(i, nullptr, &sa_old);
- if (sa_old.sa_handler == nullptr) {
- sa.sa_handler = RCInput_RPI::termination_handler;
- sigaction(i, &sa, nullptr);
- }
- }
- }
- // Initial setup of variables
- RCInput_RPI::RCInput_RPI():
- curr_tick_inc(1000/RCIN_RPI_SAMPLE_FREQ),
- curr_pointer(0),
- curr_channel(0)
- {
- }
- RCInput_RPI::~RCInput_RPI()
- {
- delete circle_buffer;
- delete con_blocks;
- }
- void RCInput_RPI::teardown()
- {
- stop_dma();
- }
- //Initializing necessary registers
- void RCInput_RPI::init_registers()
- {
- dma_reg = (uint32_t *)map_peripheral(dma_base, RCIN_RPI_DMA_LEN);
- pcm_reg = (uint32_t *)map_peripheral(pcm_base, RCIN_RPI_PCM_LEN);
- clk_reg = (uint32_t *)map_peripheral(clk_base, RCIN_RPI_CLK_LEN);
- }
- void RCInput_RPI::init()
- {
- uint64_t signal_states(0);
- #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2
- int version = 2;
- #else
- int version = UtilRPI::from(hal.util)->get_rpi_version();
- #endif
- set_physical_addresses(version);
- // Init memory for buffer and for DMA control blocks.
- // See comments in "init_ctrl_data()" to understand values "2" and "15"
- circle_buffer = new Memory_table(RCIN_RPI_BUFFER_LENGTH * 2, version);
- con_blocks = new Memory_table(RCIN_RPI_BUFFER_LENGTH * 15, version);
- init_registers();
- // Enable PPM or PWM input
- for (uint32_t i = 0; i < RCIN_RPI_CHN_NUM; ++i) {
- rc_channels[i].enable_pin = hal.gpio->channel(RcChnGpioTbl[i]);
- rc_channels[i].enable_pin->mode(HAL_GPIO_INPUT);
- }
- // Configuration
- set_sigaction();
- init_ctrl_data();
- init_PCM();
- init_DMA();
- // Wait a bit to let DMA fill queues and come to stable sampling
- hal.scheduler->delay(300);
- // Reading first sample
- curr_tick = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
- curr_pointer += 8;
- signal_states = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
- for (uint32_t i = 0; i < RCIN_RPI_CHN_NUM; ++i) {
- rc_channels[i].prev_tick = curr_tick;
- rc_channels[i].curr_signal = (signal_states & (1 << RcChnGpioTbl[i])) ? RCIN_RPI_SIG_HIGH
- : RCIN_RPI_SIG_LOW;
- rc_channels[i].last_signal = rc_channels[i].curr_signal;
- }
- curr_pointer += 8;
- set_num_channels(RCIN_RPI_CHN_NUM);
- _initialized = true;
- }
- // Processing signal
- void RCInput_RPI::_timer_tick()
- {
- uint32_t counter = 0;
- uint64_t signal_states(0);
- if (!_initialized) {
- return;
- }
- // Now we are getting address in which DMAC is writing at current moment
- dma_cb_t *ad = (dma_cb_t *)con_blocks->get_virt_addr(dma_reg[RCIN_RPI_DMA_CONBLK_AD | RCIN_RPI_DMA_CHANNEL << 8]);
- if (!ad) {
- debug("DMA sampling stopped, restarting...\n");
- init_ctrl_data();
- init_PCM();
- init_DMA();
- return;
- }
- for (int j = 1; j >= -1; j--) {
- void *x = circle_buffer->get_virt_addr((ad + j)->dst);
- if (x != nullptr) {
- counter = circle_buffer->bytes_available(curr_pointer,
- circle_buffer->get_offset(circle_buffer->_virt_pages, (uintptr_t)x));
- break;
- }
- }
- if (counter == 0) {
- return;
- }
- // How many bytes have DMA transferred (and we can process)?
- // We can't stay in method for a long time, because it may lead to delays
- if (counter > RCIN_RPI_MAX_COUNTER) {
- debug("%5d sample(s) dropped\n", (counter - RCIN_RPI_MAX_COUNTER) / 0x8);
- counter = RCIN_RPI_MAX_COUNTER;
- }
- // Processing ready bytes
- for (;counter > 0x40;) {
- // Is it timer sample?
- if (curr_pointer % (64) == 0) {
- curr_tick = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
- curr_pointer += 8;
- counter -= 8;
- }
- // Reading required bit
- signal_states = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
- for (uint32_t i = 0; i < RCIN_RPI_CHN_NUM; ++i) {
- rc_channels[i].curr_signal = (signal_states & (1 << RcChnGpioTbl[i])) ? RCIN_RPI_SIG_HIGH
- : RCIN_RPI_SIG_LOW;
- // If the signal changed
- if (rc_channels[i].curr_signal != rc_channels[i].last_signal) {
- rc_channels[i].delta_time = curr_tick - rc_channels[i].prev_tick;
- rc_channels[i].prev_tick = curr_tick;
- switch (rc_channels[i].state) {
- case RCIN_RPI_INITIAL_STATE:
- rc_channels[i].state = RCIN_RPI_ZERO_STATE;
- break;
- case RCIN_RPI_ZERO_STATE:
- if (rc_channels[i].curr_signal == 0) {
- rc_channels[i].width_s0 = (uint16_t)rc_channels[i].delta_time;
- rc_channels[i].state = RCIN_RPI_ONE_STATE;
- }
- break;
- case RCIN_RPI_ONE_STATE:
- if (rc_channels[i].curr_signal == 1) {
- rc_channels[i].width_s1 = (uint16_t)rc_channels[i].delta_time;
- rc_channels[i].state = RCIN_RPI_ZERO_STATE;
- if (1 == RCIN_RPI_CHN_NUM) {
- _process_rc_pulse(rc_channels[i].width_s0,
- rc_channels[i].width_s1);
- }
- else {
- _process_pwm_pulse(i, rc_channels[i].width_s0,
- rc_channels[i].width_s1);
- }
- }
- break;
- }
- }
- rc_channels[i].last_signal = rc_channels[i].curr_signal;
- }
- curr_pointer += 8;
- counter -= 8;
- if (curr_pointer >= circle_buffer->get_page_count() * PAGE_SIZE) {
- curr_pointer = 0;
- }
- curr_tick += curr_tick_inc;
- }
- }
- #endif // CONFIG_HAL_BOARD_SUBTYPE
|