123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- /*
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- /*
- Balance Bot simulator class
- */
- #include "SIM_BalanceBot.h"
- #include <stdio.h>
- extern const AP_HAL::HAL& hal;
- namespace SITL {
- BalanceBot::BalanceBot(const char *frame_str) :
- Aircraft(frame_str),
- skid_turn_rate(140) // degrees/sec
- {
- dcm.from_euler(0,0,0); // initial yaw, pitch and roll in radians
- printf("Balance Bot Simulation Started\n");
- }
- /*
- return yaw rate in degrees/second given steering_angle
- */
- float BalanceBot::calc_yaw_rate(float steering)
- {
- return steering * skid_turn_rate;
- }
- /*
- update the Balance Bot simulation by one time step
- */
- /*
- * The balance bot is physically modeled as an inverted pendulum(cuboid) on wheels
- * Further details on the equations used can be found here:
- * 1) http://robotics.ee.uwa.edu.au/theses/2003-Balance-Ooi.pdf page 33 onwards
- * 2) http://journals.sagepub.com/doi/pdf/10.5772/63933
- */
- void BalanceBot::update(const struct sitl_input &input)
- {
- // pendulum/chassis constants
- const float m_p = 3.060f; //pendulum mass(kg)
- const float width = 0.0650f; //width(m)
- const float height = 0.240f; //height(m)
- const float l = 0.120f; //height of center of mass from base(m)
- const float i_p = (1/12.0f)*m_p*(width*width + height*height); //Moment of inertia about pitch axis(SI units)
- // wheel constants
- const float r_w = 0.10f; //wheel radius(m)
- const float m_w = 0.120f; //wheel mass(kg)
- const float i_w = 0.5f*m_w*r_w*r_w; // moment of inertia of wheel(SI units)
- // motor constants
- const float R = 1.0f; //Winding resistance(ohm)
- const float k_e = 0.13f; //back-emf constant(SI units)
- const float k_t = 0.242f; //torque constant(SI units)
- const float v_max = 12.0f; //max input voltage(V)
- // balance bot uses skid steering
- const float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
- const float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
- const float steering = motor1 - motor2;
- const float throttle = 0.5 * (motor1 + motor2);
- // motor input voltage: (throttle/max_throttle)*v_max
- const float v = throttle*v_max;
- // how much time has passed?
- const float delta_time = frame_time_us * 1.0e-6f;
- // yaw rate in degrees/s
- const float yaw_rate = calc_yaw_rate(steering);
- // obtain roll, pitch, yaw from dcm
- float r, p, y;
- dcm.to_euler(&r, &p, &y);
- float theta = p; //radians
- float ang_vel = gyro.y; //radians/s
-
- // t1,t2,t3 are terms in the equation to find vehicle frame x acceleration
- const float t1 = ((2.0f*k_t*v/(R*r_w)) - (2.0f*k_t*k_e*velocity_vf_x/(R*r_w*r_w)) - (m_p*l*ang_vel*ang_vel*sin(theta))) * (i_p + m_p*l*l);
- const float t2 = -m_p*l*cos(theta)*((2.0f*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*k_t*v/(R)) + (m_p*GRAVITY_MSS*l*sin(theta)));
- const float t3 = ( ((2.0f*m_w + 2.0f*i_w/(r_w*r_w) + m_p) * (i_p + m_p*l*l)) - (m_p*m_p*l*l*cos(theta)*cos(theta)) );
- //vehicle frame x acceleration
- const float accel_vf_x = (t1-t2)/t3;
- const float angular_accel_bf_y = ((2.0f*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*k_t*v/(R)) + m_p*l*accel_vf_x*cos(theta) + m_p*GRAVITY_MSS*l*sin(theta))
- / (i_p + m_p*l*l);
- // update theta and angular velocity
- ang_vel += angular_accel_bf_y * delta_time;
- theta += ang_vel * delta_time;
- theta = fmod(theta, radians(360));
- // update x velocity in vehicle frame
- velocity_vf_x += accel_vf_x * delta_time;
- gyro = Vector3f(0, ang_vel, radians(yaw_rate));
- // update attitude
- dcm.rotate(gyro * delta_time);
- dcm.normalize();
- // accel in body frame due to motor
- accel_body = Vector3f(accel_vf_x*cos(theta), 0, -accel_vf_x*sin(theta));
- // add in accel due to direction change
- accel_body.y += radians(yaw_rate) * velocity_vf_x;
- // now in earth frame
- Vector3f accel_earth = dcm * accel_body;
- accel_earth += Vector3f(0, 0, GRAVITY_MSS);
- // we are on the ground, so our vertical accel is zero
- accel_earth.z = 0;
- if (!hal.util->get_soft_armed()) {
- // reset to vertical when not armed for faster testing
- accel_earth.zero();
- velocity_ef.zero();
- dcm.identity();
- gyro.zero();
- velocity_vf_x =0;
- theta = radians(0);
- ang_vel = 0;
- }
-
- // work out acceleration as seen by the accelerometers. It sees the kinematic
- // acceleration (ie. real movement), plus gravity
- accel_body += dcm.transposed() * (Vector3f(0, 0, -GRAVITY_MSS));
- // new velocity vector
- velocity_ef += accel_earth * delta_time;
- // new position vector
- position += (velocity_ef * delta_time);
- // neglect roll
- dcm.to_euler(&r, &p, &y);
- dcm.from_euler(0.0f, p, y);
- use_smoothing = true;
- // update lat/lon/altitude
- update_position();
- time_advance();
- // update magnetic field
- update_mag_field_bf();
- }
- }// namespace SITL
|