123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- /*
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- /*
- * AP_MotorsSingle.cpp - ArduCopter motors library
- * Code by RandyMackay. DIYDrones.com
- *
- */
- #include <AP_HAL/AP_HAL.h>
- #include <AP_Math/AP_Math.h>
- #include "AP_MotorsSingle.h"
- #include <GCS_MAVLink/GCS.h>
- extern const AP_HAL::HAL& hal;
- // init
- void AP_MotorsSingle::init(motor_frame_class frame_class, motor_frame_type frame_type)
- {
- // make sure 6 output channels are mapped
- for (uint8_t i = 0; i < 6; i++) {
- add_motor_num(CH_1 + i);
- }
- // set the motor_enabled flag so that the main ESC can be calibrated like other frame types
- motor_enabled[AP_MOTORS_MOT_5] = true;
- motor_enabled[AP_MOTORS_MOT_6] = true;
- // setup actuator scaling
- for (uint8_t i = 0; i < NUM_ACTUATORS; i++) {
- SRV_Channels::set_angle(SRV_Channels::get_motor_function(i), AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
- }
- // record successful initialisation if what we setup was the desired frame_class
- _flags.initialised_ok = (frame_class == MOTOR_FRAME_SINGLE);
- }
- // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus)
- void AP_MotorsSingle::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type)
- {
- // nothing to do
- }
- // set update rate to motors - a value in hertz
- void AP_MotorsSingle::set_update_rate(uint16_t speed_hz)
- {
- // record requested speed
- _speed_hz = speed_hz;
- uint32_t mask =
- 1U << AP_MOTORS_MOT_5 |
- 1U << AP_MOTORS_MOT_6 ;
- rc_set_freq(mask, _speed_hz);
- }
- void AP_MotorsSingle::output_to_motors()
- {
- if (!_flags.initialised_ok) {
- return;
- }
- switch (_spool_state) {
- case SpoolState::SHUT_DOWN:
- // sends minimum values out to the motors
- rc_write_angle(AP_MOTORS_MOT_1, _roll_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
- rc_write_angle(AP_MOTORS_MOT_2, _pitch_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
- rc_write_angle(AP_MOTORS_MOT_3, -_roll_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
- rc_write_angle(AP_MOTORS_MOT_4, -_pitch_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
- rc_write(AP_MOTORS_MOT_5, output_to_pwm(0));
- rc_write(AP_MOTORS_MOT_6, output_to_pwm(0));
- break;
- case SpoolState::GROUND_IDLE:
- // sends output to motors when armed but not flying
- for (uint8_t i = 0; i < NUM_ACTUATORS; i++) {
- rc_write_angle(AP_MOTORS_MOT_1 + i, _spin_up_ratio * _actuator_out[i] * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
- }
- set_actuator_with_slew(_actuator[5], actuator_spin_up_to_ground_idle());
- set_actuator_with_slew(_actuator[6], actuator_spin_up_to_ground_idle());
- rc_write(AP_MOTORS_MOT_5, output_to_pwm(_actuator[5]));
- rc_write(AP_MOTORS_MOT_6, output_to_pwm(_actuator[6]));
- break;
- case SpoolState::SPOOLING_UP:
- case SpoolState::THROTTLE_UNLIMITED:
- case SpoolState::SPOOLING_DOWN:
- // set motor output based on thrust requests
- for (uint8_t i = 0; i < NUM_ACTUATORS; i++) {
- rc_write_angle(AP_MOTORS_MOT_1 + i, _actuator_out[i] * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
- }
- set_actuator_with_slew(_actuator[5], thrust_to_actuator(_thrust_out));
- set_actuator_with_slew(_actuator[6], thrust_to_actuator(_thrust_out));
- rc_write(AP_MOTORS_MOT_5, output_to_pwm(_actuator[5]));
- rc_write(AP_MOTORS_MOT_6, output_to_pwm(_actuator[6]));
- break;
- }
- }
- // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
- // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
- uint16_t AP_MotorsSingle::get_motor_mask()
- {
- uint32_t motor_mask =
- 1U << AP_MOTORS_MOT_1 |
- 1U << AP_MOTORS_MOT_2 |
- 1U << AP_MOTORS_MOT_3 |
- 1U << AP_MOTORS_MOT_4 |
- 1U << AP_MOTORS_MOT_5 |
- 1U << AP_MOTORS_MOT_6;
- uint16_t mask = rc_map_mask(motor_mask);
- // add parent's mask
- mask |= AP_MotorsMulticopter::get_motor_mask();
- return mask;
- }
- // sends commands to the motors
- void AP_MotorsSingle::output_armed_stabilizing()
- {
- float roll_thrust; // roll thrust input value, +/- 1.0
- float pitch_thrust; // pitch thrust input value, +/- 1.0
- float yaw_thrust; // yaw thrust input value, +/- 1.0
- float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
- float throttle_avg_max; // throttle thrust average maximum value, 0.0 - 1.0
- float thrust_min_rpy; // the minimum throttle setting that will not limit the roll and pitch output
- float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
- float rp_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits
- float actuator_allowed = 0.0f; // amount of yaw we can fit in
- float actuator[NUM_ACTUATORS]; // combined roll, pitch and yaw thrusts for each actuator
- float actuator_max = 0.0f; // maximum actuator value
- // apply voltage and air pressure compensation
- const float compensation_gain = get_compensation_gain();
- roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain;
- pitch_thrust = (_pitch_in + _pitch_in_ff) * compensation_gain;
- yaw_thrust = (_yaw_in + _yaw_in_ff) * compensation_gain;
- throttle_thrust = get_throttle() * compensation_gain;
- throttle_avg_max = _throttle_avg_max * compensation_gain;
- // sanity check throttle is above zero and below current limited throttle
- if (throttle_thrust <= 0.0f) {
- throttle_thrust = 0.0f;
- limit.throttle_lower = true;
- }
- if (throttle_thrust >= _throttle_thrust_max) {
- throttle_thrust = _throttle_thrust_max;
- limit.throttle_upper = true;
- }
- throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, _throttle_thrust_max);
- float rp_thrust_max = MAX(fabsf(roll_thrust), fabsf(pitch_thrust));
- // calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw
- if (is_zero(rp_thrust_max)) {
- rp_scale = 1.0f;
- } else {
- rp_scale = constrain_float((1.0f - MIN(fabsf(yaw_thrust), (float) _yaw_headroom / 1000.0f)) / rp_thrust_max, 0.0f, 1.0f);
- if (rp_scale < 1.0f) {
- limit.roll = true;
- limit.pitch = true;
- }
- }
- actuator_allowed = 1.0f - rp_scale * rp_thrust_max;
- if (fabsf(yaw_thrust) > actuator_allowed) {
- yaw_thrust = constrain_float(yaw_thrust, -actuator_allowed, actuator_allowed);
- limit.yaw = true;
- }
- // combine roll, pitch and yaw on each actuator
- // front servo
- actuator[0] = rp_scale * roll_thrust - yaw_thrust;
- // right servo
- actuator[1] = rp_scale * pitch_thrust - yaw_thrust;
- // rear servo
- actuator[2] = -rp_scale * roll_thrust - yaw_thrust;
- // left servo
- actuator[3] = -rp_scale * pitch_thrust - yaw_thrust;
- // calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces
- thrust_min_rpy = MAX(MAX(fabsf(actuator[0]), fabsf(actuator[1])), MAX(fabsf(actuator[2]), fabsf(actuator[3])));
- thr_adj = throttle_thrust - throttle_avg_max;
- if (thr_adj < (thrust_min_rpy - throttle_avg_max)) {
- // Throttle can't be reduced to the desired level because this would mean roll or pitch control
- // would not be able to reach the desired level because of lack of thrust.
- thr_adj = MIN(thrust_min_rpy, throttle_avg_max) - throttle_avg_max;
- }
- // calculate the throttle setting for the lift fan
- _thrust_out = throttle_avg_max + thr_adj;
- if (is_zero(_thrust_out)) {
- limit.roll = true;
- limit.pitch = true;
- limit.yaw = true;
- }
- // limit thrust out for calculation of actuator gains
- float thrust_out_actuator = constrain_float(MAX(_throttle_hover * 0.5f, _thrust_out), 0.5f, 1.0f);
- // calculate the maximum allowed actuator output and maximum requested actuator output
- for (uint8_t i = 0; i < NUM_ACTUATORS; i++) {
- if (actuator_max > fabsf(actuator[i])) {
- actuator_max = fabsf(actuator[i]);
- }
- }
- if (actuator_max > thrust_out_actuator && !is_zero(actuator_max)) {
- // roll, pitch and yaw request can not be achieved at full servo defection
- // reduce roll, pitch and yaw to reduce the requested defection to maximum
- limit.roll = true;
- limit.pitch = true;
- limit.yaw = true;
- rp_scale = thrust_out_actuator / actuator_max;
- } else {
- rp_scale = 1.0f;
- }
- // force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared
- // static thrust is proportional to the airflow velocity squared
- // therefore the torque of the roll and pitch actuators should be approximately proportional to
- // the angle of attack multiplied by the static thrust.
- for (uint8_t i = 0; i < NUM_ACTUATORS; i++) {
- _actuator_out[i] = constrain_float(rp_scale * actuator[i] / thrust_out_actuator, -1.0f, 1.0f);
- }
- }
- // output_test_seq - spin a motor at the pwm value specified
- // motor_seq is the motor's sequence number from 1 to the number of motors on the frame
- // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
- void AP_MotorsSingle::output_test_seq(uint8_t motor_seq, int16_t pwm)
- {
- // exit immediately if not armed
- if (!armed()) {
- return;
- }
- // output to motors and servos
- switch (motor_seq) {
- case 1:
- // flap servo 1
- rc_write(AP_MOTORS_MOT_1, pwm);
- break;
- case 2:
- // flap servo 2
- rc_write(AP_MOTORS_MOT_2, pwm);
- break;
- case 3:
- // flap servo 3
- rc_write(AP_MOTORS_MOT_3, pwm);
- break;
- case 4:
- // flap servo 4
- rc_write(AP_MOTORS_MOT_4, pwm);
- break;
- case 5:
- // spin motor 1
- rc_write(AP_MOTORS_MOT_5, pwm);
- break;
- case 6:
- // spin motor 2
- rc_write(AP_MOTORS_MOT_6, pwm);
- break;
- default:
- // do nothing
- break;
- }
- }
|