123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596 |
- /*
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include <stdlib.h>
- #include <AP_HAL/AP_HAL.h>
- #include "AP_MotorsHeli_Dual.h"
- #include <GCS_MAVLink/GCS.h>
- extern const AP_HAL::HAL& hal;
- const AP_Param::GroupInfo AP_MotorsHeli_Dual::var_info[] = {
- AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
- // Indices 1-6 were used by servo position params and should not be used
- // Indices 7-8 were used by phase angle params and should not be used
- // @Param: DUAL_MODE
- // @DisplayName: Dual Mode
- // @Description: Sets the dual mode of the heli, either as tandem or as transverse.
- // @Values: 0:Longitudinal, 1:Transverse
- // @User: Standard
- AP_GROUPINFO("DUAL_MODE", 9, AP_MotorsHeli_Dual, _dual_mode, AP_MOTORS_HELI_DUAL_MODE_TANDEM),
- // @Param: DCP_SCALER
- // @DisplayName: Differential-Collective-Pitch Scaler
- // @Description: Scaling factor applied to the differential-collective-pitch
- // @Range: 0 1
- // @User: Standard
- AP_GROUPINFO("DCP_SCALER", 10, AP_MotorsHeli_Dual, _dcp_scaler, AP_MOTORS_HELI_DUAL_DCP_SCALER),
- // @Param: DCP_YAW
- // @DisplayName: Differential-Collective-Pitch Yaw Mixing
- // @Description: Feed-forward compensation to automatically add yaw input when differential collective pitch is applied.
- // @Range: -10 10
- // @Increment: 0.1
- AP_GROUPINFO("DCP_YAW", 11, AP_MotorsHeli_Dual, _dcp_yaw_effect, 0),
- // @Param: YAW_SCALER
- // @DisplayName: Scaler for yaw mixing
- // @Description: Scaler for mixing yaw into roll or pitch.
- // @Range: -10 10
- // @Increment: 0.1
- AP_GROUPINFO("YAW_SCALER", 12, AP_MotorsHeli_Dual, _yaw_scaler, 1.0f),
- // Indices 13-15 were used by RSC_PWM_MIN, RSC_PWM_MAX and RSC_PWM_REV and should not be used
- // @Param: COL2_MIN
- // @DisplayName: Collective Pitch Minimum for rear swashplate
- // @Description: Lowest possible servo position in PWM microseconds for the rear swashplate
- // @Range: 1000 2000
- // @Units: PWM
- // @Increment: 1
- // @User: Standard
- AP_GROUPINFO("COL2_MIN", 16, AP_MotorsHeli_Dual, _collective2_min, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN),
- // @Param: COL2_MAX
- // @DisplayName: Collective Pitch Maximum for rear swashplate
- // @Description: Highest possible servo position in PWM microseconds for the rear swashplate
- // @Range: 1000 2000
- // @Units: PWM
- // @Increment: 1
- // @User: Standard
- AP_GROUPINFO("COL2_MAX", 17, AP_MotorsHeli_Dual, _collective2_max, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX),
- // @Param: COL2_MID
- // @DisplayName: Collective Pitch Mid-Point for rear swashplate
- // @Description: Swash servo position in PWM microseconds corresponding to zero collective pitch for the rear swashplate (or zero lift for Asymmetrical blades)
- // @Range: 1000 2000
- // @Units: PWM
- // @Increment: 1
- // @User: Standard
- AP_GROUPINFO("COL2_MID", 18, AP_MotorsHeli_Dual, _collective2_mid, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MID),
- // Indice 19 was used by COL_CTRL_DIR and should not be used
- // @Group: SW1_H3_
- // @Path: AP_MotorsHeli_Swash.cpp
- AP_SUBGROUPINFO(_swashplate1, "SW1_", 20, AP_MotorsHeli_Dual, AP_MotorsHeli_Swash),
- // @Group: SW2_H3_
- // @Path: AP_MotorsHeli_Swash.cpp
- AP_SUBGROUPINFO(_swashplate2, "SW2_", 21, AP_MotorsHeli_Dual, AP_MotorsHeli_Swash),
- AP_GROUPEND
- };
- // set update rate to motors - a value in hertz
- void AP_MotorsHeli_Dual::set_update_rate( uint16_t speed_hz )
- {
- // record requested speed
- _speed_hz = speed_hz;
- // setup fast channels
- uint16_t mask = 0;
- for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) {
- mask |= 1U << (AP_MOTORS_MOT_1+i);
- }
- if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- mask |= 1U << (AP_MOTORS_MOT_7);
- }
- if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- mask |= 1U << (AP_MOTORS_MOT_8);
- }
- rc_set_freq(mask, _speed_hz);
- }
- // init_outputs
- bool AP_MotorsHeli_Dual::init_outputs()
- {
- if (!_flags.initialised_ok) {
- // make sure 6 output channels are mapped
- for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) {
- add_motor_num(CH_1+i);
- }
- if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- add_motor_num(CH_7);
- }
- if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- add_motor_num(CH_8);
- }
- // set rotor servo range
- _main_rotor.init_servo();
- }
- // reset swash servo range and endpoints
- for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) {
- reset_swash_servo(SRV_Channels::get_motor_function(i));
- }
- if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- reset_swash_servo(SRV_Channels::get_motor_function(6));
- }
- if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- reset_swash_servo(SRV_Channels::get_motor_function(7));
- }
- _flags.initialised_ok = true;
- return true;
- }
- // output_test_seq - spin a motor at the pwm value specified
- // motor_seq is the motor's sequence number from 1 to the number of motors on the frame
- // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
- void AP_MotorsHeli_Dual::output_test_seq(uint8_t motor_seq, int16_t pwm)
- {
- // exit immediately if not armed
- if (!armed()) {
- return;
- }
- // output to motors and servos
- switch (motor_seq) {
- case 1:
- // swash servo 1
- rc_write(AP_MOTORS_MOT_1, pwm);
- break;
- case 2:
- // swash servo 2
- rc_write(AP_MOTORS_MOT_2, pwm);
- break;
- case 3:
- // swash servo 3
- rc_write(AP_MOTORS_MOT_3, pwm);
- break;
- case 4:
- // swash servo 4
- rc_write(AP_MOTORS_MOT_4, pwm);
- break;
- case 5:
- // swash servo 5
- rc_write(AP_MOTORS_MOT_5, pwm);
- break;
- case 6:
- // swash servo 6
- rc_write(AP_MOTORS_MOT_6, pwm);
- break;
- case 7:
- // main rotor
- rc_write(AP_MOTORS_HELI_RSC, pwm);
- break;
- default:
- // do nothing
- break;
- }
- }
- // set_desired_rotor_speed
- void AP_MotorsHeli_Dual::set_desired_rotor_speed(float desired_speed)
- {
- _main_rotor.set_desired_speed(desired_speed);
- }
- // set_rotor_rpm - used for governor with speed sensor
- void AP_MotorsHeli_Dual::set_rpm(float rotor_rpm)
- {
- _main_rotor.set_rotor_rpm(rotor_rpm);
- }
- // calculate_armed_scalars
- void AP_MotorsHeli_Dual::calculate_armed_scalars()
- {
- // Set rsc mode specific parameters
- if (_main_rotor._rsc_mode.get() == ROTOR_CONTROL_MODE_OPEN_LOOP_POWER_OUTPUT || _main_rotor._rsc_mode.get() == ROTOR_CONTROL_MODE_CLOSED_LOOP_POWER_OUTPUT) {
- _main_rotor.set_throttle_curve();
- }
- // keeps user from changing RSC mode while armed
- if (_main_rotor._rsc_mode.get() != _main_rotor.get_control_mode()) {
- _main_rotor.reset_rsc_mode_param();
- _heliflags.save_rsc_mode = true;
- gcs().send_text(MAV_SEVERITY_CRITICAL, "RSC control mode change failed");
- }
- // saves rsc mode parameter when disarmed if it had been reset while armed
- if (_heliflags.save_rsc_mode && !_flags.armed) {
- _main_rotor._rsc_mode.save();
- _heliflags.save_rsc_mode = false;
- }
- }
- // calculate_scalars
- void AP_MotorsHeli_Dual::calculate_scalars()
- {
- // range check collective min, max and mid
- if( _collective_min >= _collective_max ) {
- _collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN;
- _collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX;
- }
- // range check collective min, max and mid for rear swashplate
- if( _collective2_min >= _collective2_max ) {
- _collective2_min = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN;
- _collective2_max = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX;
- }
- _collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
- _collective2_mid = constrain_int16(_collective2_mid, _collective2_min, _collective2_max);
- // calculate collective mid point as a number from 0 to 1000
- _collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min));
- _collective2_mid_pct = ((float)(_collective2_mid-_collective2_min))/((float)(_collective2_max-_collective2_min));
- // configure swashplate 1 and update scalars
- _swashplate1.configure();
- _swashplate1.calculate_roll_pitch_collective_factors();
- // configure swashplate 2 and update scalars
- _swashplate2.configure();
- _swashplate2.calculate_roll_pitch_collective_factors();
- // set mode of main rotor controller and trigger recalculation of scalars
- _main_rotor.set_control_mode(static_cast<RotorControlMode>(_main_rotor._rsc_mode.get()));
- calculate_armed_scalars();
- }
- // get_swashplate - calculate movement of each swashplate based on configuration
- float AP_MotorsHeli_Dual::get_swashplate (int8_t swash_num, int8_t swash_axis, float pitch_input, float roll_input, float yaw_input, float coll_input)
- {
- float swash_tilt = 0.0f;
- if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) {
- // roll tilt
- if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL) {
- if (swash_num == 1) {
- swash_tilt = 0.0f;
- } else if (swash_num == 2) {
- swash_tilt = 0.0f;
- }
- } else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH) {
- // pitch tilt
- if (swash_num == 1) {
- swash_tilt = pitch_input - _yaw_scaler * yaw_input;
- } else if (swash_num == 2) {
- swash_tilt = pitch_input + _yaw_scaler * yaw_input;
- }
- } else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL) {
- // collective
- if (swash_num == 1) {
- swash_tilt = 0.45f * _dcp_scaler * roll_input + coll_input;
- } else if (swash_num == 2) {
- swash_tilt = -0.45f * _dcp_scaler * roll_input + coll_input;
- }
- }
- } else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM
- // roll tilt
- if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL) {
- if (swash_num == 1) {
- swash_tilt = roll_input + _yaw_scaler * yaw_input;
- } else if (swash_num == 2) {
- swash_tilt = roll_input - _yaw_scaler * yaw_input;
- }
- } else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH) {
- // pitch tilt
- if (swash_num == 1) {
- swash_tilt = 0.0f;
- } else if (swash_num == 2) {
- swash_tilt = 0.0f;
- }
- } else if (swash_axis == AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL) {
- // collective
- if (swash_num == 1) {
- swash_tilt = 0.45f * _dcp_scaler * pitch_input + coll_input;
- } else if (swash_num == 2) {
- swash_tilt = -0.45f * _dcp_scaler * pitch_input + coll_input;
- }
- }
- }
- return swash_tilt;
- }
- // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
- // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
- uint16_t AP_MotorsHeli_Dual::get_motor_mask()
- {
- // dual heli uses channels 1,2,3,4,5,6 and 8
- uint16_t mask = 0;
- for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) {
- mask |= 1U << (AP_MOTORS_MOT_1+i);
- }
- if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- mask |= 1U << AP_MOTORS_MOT_7;
- }
- if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- mask |= 1U << AP_MOTORS_MOT_8;
- }
- mask |= 1U << AP_MOTORS_HELI_RSC;
- return mask;
- }
- // update_motor_controls - sends commands to motor controllers
- void AP_MotorsHeli_Dual::update_motor_control(RotorControlState state)
- {
- // Send state update to motors
- _main_rotor.output(state);
- if (state == ROTOR_CONTROL_STOP) {
- // set engine run enable aux output to not run position to kill engine when disarmed
- SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MIN);
- } else {
- // else if armed, set engine run enable output to run position
- SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MAX);
- }
- // Check if rotors are run-up
- _heliflags.rotor_runup_complete = _main_rotor.is_runup_complete();
- }
- //
- // move_actuators - moves swash plate to attitude of parameters passed in
- // - expected ranges:
- // roll : -1 ~ +1
- // pitch: -1 ~ +1
- // collective: 0 ~ 1
- // yaw: -1 ~ +1
- //
- void AP_MotorsHeli_Dual::move_actuators(float roll_out, float pitch_out, float collective_in, float yaw_out)
- {
- // initialize limits flag
- limit.roll = false;
- limit.pitch = false;
- limit.yaw = false;
- limit.throttle_lower = false;
- limit.throttle_upper = false;
- if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) {
- if (pitch_out < -_cyclic_max/4500.0f) {
- pitch_out = -_cyclic_max/4500.0f;
- limit.pitch = true;
- }
- if (pitch_out > _cyclic_max/4500.0f) {
- pitch_out = _cyclic_max/4500.0f;
- limit.pitch = true;
- }
- } else {
- if (roll_out < -_cyclic_max/4500.0f) {
- roll_out = -_cyclic_max/4500.0f;
- limit.roll = true;
- }
- if (roll_out > _cyclic_max/4500.0f) {
- roll_out = _cyclic_max/4500.0f;
- limit.roll = true;
- }
- }
- if (_heliflags.inverted_flight) {
- collective_in = 1 - collective_in;
- }
- float yaw_compensation = 0.0f;
- // if servo output not in manual mode, process pre-compensation factors
- if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) {
- // add differential collective pitch yaw compensation
- if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) {
- yaw_compensation = _dcp_yaw_effect * roll_out;
- } else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM
- yaw_compensation = _dcp_yaw_effect * pitch_out;
- }
- yaw_out = yaw_out + yaw_compensation;
- }
- // scale yaw and update limits
- if (yaw_out < -_cyclic_max/4500.0f) {
- yaw_out = -_cyclic_max/4500.0f;
- limit.yaw = true;
- }
- if (yaw_out > _cyclic_max/4500.0f) {
- yaw_out = _cyclic_max/4500.0f;
- limit.yaw = true;
- }
- // constrain collective input
- float collective_out = collective_in;
- if (collective_out <= 0.0f) {
- collective_out = 0.0f;
- limit.throttle_lower = true;
- }
- if (collective_out >= 1.0f) {
- collective_out = 1.0f;
- limit.throttle_upper = true;
- }
- // ensure not below landed/landing collective
- if (_heliflags.landing_collective && collective_out < _collective_mid_pct) {
- collective_out = _collective_mid_pct;
- limit.throttle_lower = true;
- }
- // Set rear collective to midpoint if required
- float collective2_out = collective_out;
- if (_servo_mode == SERVO_CONTROL_MODE_MANUAL_CENTER) {
- collective2_out = _collective2_mid_pct;
- }
- // scale collective pitch for front swashplate (servos 1,2,3)
- float collective_scaler = ((float)(_collective_max-_collective_min))*0.001f;
- float collective_out_scaled = collective_out * collective_scaler + (_collective_min - 1000)*0.001f;
- // scale collective pitch for rear swashplate (servos 4,5,6)
- float collective2_scaler = ((float)(_collective2_max-_collective2_min))*0.001f;
- float collective2_out_scaled = collective2_out * collective2_scaler + (_collective2_min - 1000)*0.001f;
- // feed power estimate into main rotor controller
- // ToDo: add main rotor cyclic power?
- _main_rotor.set_collective(fabsf(collective_out));
- // compute swashplate tilt
- float swash1_pitch = get_swashplate(1, AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH, pitch_out, roll_out, yaw_out, collective_out_scaled);
- float swash1_roll = get_swashplate(1, AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL, pitch_out, roll_out, yaw_out, collective_out_scaled);
- float swash1_coll = get_swashplate(1, AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL, pitch_out, roll_out, yaw_out, collective_out_scaled);
- float swash2_pitch = get_swashplate(2, AP_MOTORS_HELI_DUAL_SWASH_AXIS_PITCH, pitch_out, roll_out, yaw_out, collective2_out_scaled);
- float swash2_roll = get_swashplate(2, AP_MOTORS_HELI_DUAL_SWASH_AXIS_ROLL, pitch_out, roll_out, yaw_out, collective2_out_scaled);
- float swash2_coll = get_swashplate(2, AP_MOTORS_HELI_DUAL_SWASH_AXIS_COLL, pitch_out, roll_out, yaw_out, collective2_out_scaled);
-
- // get servo positions from swashplate library
- _servo_out[CH_1] = _swashplate1.get_servo_out(CH_1,swash1_pitch,swash1_roll,swash1_coll);
- _servo_out[CH_2] = _swashplate1.get_servo_out(CH_2,swash1_pitch,swash1_roll,swash1_coll);
- _servo_out[CH_3] = _swashplate1.get_servo_out(CH_3,swash1_pitch,swash1_roll,swash1_coll);
- if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- _servo_out[CH_7] = _swashplate1.get_servo_out(CH_4,swash1_pitch,swash1_roll,swash1_coll);
- }
- // get servo positions from swashplate library
- _servo_out[CH_4] = _swashplate2.get_servo_out(CH_1,swash2_pitch,swash2_roll,swash2_coll);
- _servo_out[CH_5] = _swashplate2.get_servo_out(CH_2,swash2_pitch,swash2_roll,swash2_coll);
- _servo_out[CH_6] = _swashplate2.get_servo_out(CH_3,swash2_pitch,swash2_roll,swash2_coll);
- if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- _servo_out[CH_8] = _swashplate2.get_servo_out(CH_4,swash2_pitch,swash2_roll,swash2_coll);
- }
- }
- void AP_MotorsHeli_Dual::output_to_motors()
- {
- if (!_flags.initialised_ok) {
- return;
- }
- // actually move the servos. PWM is sent based on nominal 1500 center. servo output shifts center based on trim value.
- for (uint8_t i=0; i<AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS; i++) {
- rc_write_swash(i, _servo_out[CH_1+i]);
- }
- // write to servo for 4 servo of 4 servo swashplate
- if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate1.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- rc_write_swash(AP_MOTORS_MOT_7, _servo_out[CH_7]);
- }
- // write to servo for 4 servo of 4 servo swashplate
- if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_90 || _swashplate2.get_swash_type() == SWASHPLATE_TYPE_H4_45) {
- rc_write_swash(AP_MOTORS_MOT_8, _servo_out[CH_8]);
- }
- switch (_spool_state) {
- case SpoolState::SHUT_DOWN:
- // sends minimum values out to the motors
- update_motor_control(ROTOR_CONTROL_STOP);
- break;
- case SpoolState::GROUND_IDLE:
- // sends idle output to motors when armed. rotor could be static or turning (autorotation)
- update_motor_control(ROTOR_CONTROL_IDLE);
- break;
- case SpoolState::SPOOLING_UP:
- case SpoolState::THROTTLE_UNLIMITED:
- // set motor output based on thrust requests
- update_motor_control(ROTOR_CONTROL_ACTIVE);
- break;
- case SpoolState::SPOOLING_DOWN:
- // sends idle output to motors and wait for rotor to stop
- update_motor_control(ROTOR_CONTROL_IDLE);
- break;
- }
- }
- // servo_test - move servos through full range of movement
- void AP_MotorsHeli_Dual::servo_test()
- {
- // this test cycle is equivalent to that of AP_MotorsHeli_Single, but excluding
- // mixing of yaw, as that physical movement is represented by pitch and roll
- _servo_test_cycle_time += 1.0f / _loop_rate;
- if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back
- (_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){
- _pitch_test += (1.0f / (_loop_rate/2));
- _oscillate_angle += 8 * M_PI / _loop_rate;
- } else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around
- (_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){
- _oscillate_angle += M_PI / (2 * _loop_rate);
- _roll_test = sinf(_oscillate_angle);
- _pitch_test = cosf(_oscillate_angle);
- } else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level
- (_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){
- _pitch_test -= (1.0f / (_loop_rate/2));
- _oscillate_angle += 8 * M_PI / _loop_rate;
- } else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top
- _collective_test += (1.0f / _loop_rate);
- _oscillate_angle += 2 * M_PI / _loop_rate;
- } else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom
- _collective_test -= (1.0f / _loop_rate);
- _oscillate_angle += 2 * M_PI / _loop_rate;
- } else { // reset cycle
- _servo_test_cycle_time = 0.0f;
- _oscillate_angle = 0.0f;
- _collective_test = 0.0f;
- _roll_test = 0.0f;
- _pitch_test = 0.0f;
- // decrement servo test cycle counter at the end of the cycle
- if (_servo_test_cycle_counter > 0){
- _servo_test_cycle_counter--;
- }
- }
- // over-ride servo commands to move servos through defined ranges
- _throttle_filter.reset(constrain_float(_collective_test, 0.0f, 1.0f));
- _roll_in = constrain_float(_roll_test, -1.0f, 1.0f);
- _pitch_in = constrain_float(_pitch_test, -1.0f, 1.0f);
- }
- // parameter_check - check if helicopter specific parameters are sensible
- bool AP_MotorsHeli_Dual::parameter_check(bool display_msg) const
- {
- // returns false if Phase Angle is outside of range for H3 swashplate 1
- if (_swashplate1.get_swash_type() == SWASHPLATE_TYPE_H3 && (_swashplate1.get_phase_angle() > 30 || _swashplate1.get_phase_angle() < -30)){
- if (display_msg) {
- gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_SW1_H3_PHANG out of range");
- }
- return false;
- }
- // returns false if Phase Angle is outside of range for H3 swashplate 2
- if (_swashplate2.get_swash_type() == SWASHPLATE_TYPE_H3 && (_swashplate2.get_phase_angle() > 30 || _swashplate2.get_phase_angle() < -30)){
- if (display_msg) {
- gcs().send_text(MAV_SEVERITY_CRITICAL, "PreArm: H_SW2_H3_PHANG out of range");
- }
- return false;
- }
- // check parent class parameters
- return AP_MotorsHeli::parameter_check(display_msg);
- }
|