123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- /*
- * polygon.cpp
- * Copyright (C) Andrew Tridgell 2011
- *
- * This file is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This file is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- * See the GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include "AP_Math.h"
- #pragma GCC optimize("O2")
- /*
- * The point in polygon algorithm is based on:
- * https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html
- */
- /*
- * Polygon_outside(): test for a point in a polygon
- * Input: P = a point,
- * V[] = vertex points of a polygon V[n+1] with V[n]=V[0]
- * Return: true if P is outside the polygon
- *
- * This does not take account of the curvature of the earth, but we
- * expect that to be very small over the distances involved in the
- * fence boundary
- */
- template <typename T>
- bool Polygon_outside(const Vector2<T> &P, const Vector2<T> *V, unsigned n)
- {
- const bool complete = Polygon_complete(V, n);
- if (complete) {
- // the last point is the same as the first point; treat as if
- // the last point wasn't passed in
- n--;
- }
- unsigned i, j;
- // step through each edge pair-wise looking for crossings:
- bool outside = true;
- for (i=0; i<n; i++) {
- j = i+1;
- if (j >= n) {
- j = 0;
- }
- if ((V[i].y > P.y) == (V[j].y > P.y)) {
- continue;
- }
- const T dx1 = P.x - V[i].x;
- const T dx2 = V[j].x - V[i].x;
- const T dy1 = P.y - V[i].y;
- const T dy2 = V[j].y - V[i].y;
- const int8_t dx1s = (dx1 < 0) ? -1 : 1;
- const int8_t dx2s = (dx2 < 0) ? -1 : 1;
- const int8_t dy1s = (dy1 < 0) ? -1 : 1;
- const int8_t dy2s = (dy2 < 0) ? -1 : 1;
- const int8_t m1 = dx1s * dy2s;
- const int8_t m2 = dx2s * dy1s;
- // we avoid the 64 bit multiplies if we can based on sign checks.
- if (dy2 < 0) {
- if (m1 > m2) {
- outside = !outside;
- } else if (m1 < m2) {
- continue;
- } else {
- if (std::is_floating_point<T>::value) {
- if ( dx1 * dy2 > dx2 * dy1 ) {
- outside = !outside;
- }
- } else {
- if ( dx1 * (int64_t)dy2 > dx2 * (int64_t)dy1 ) {
- outside = !outside;
- }
- }
- }
- } else {
- if (m1 < m2) {
- outside = !outside;
- } else if (m1 > m2) {
- continue;
- } else {
- if (std::is_floating_point<T>::value) {
- if ( dx1 * dy2 < dx2 * dy1 ) {
- outside = !outside;
- }
- } else {
- if ( dx1 * (int64_t)dy2 < dx2 * (int64_t)dy1 ) {
- outside = !outside;
- }
- }
- }
- }
- }
- return outside;
- }
- /*
- * check if a polygon is complete.
- *
- * We consider a polygon to be complete if we have at least 4 points,
- * and the first point is the same as the last point. That is the
- * minimum requirement for the Polygon_outside function to work
- */
- template <typename T>
- bool Polygon_complete(const Vector2<T> *V, unsigned n)
- {
- return (n >= 4 && V[n-1] == V[0]);
- }
- // Necessary to avoid linker errors
- template bool Polygon_outside<int32_t>(const Vector2l &P, const Vector2l *V, unsigned n);
- template bool Polygon_complete<int32_t>(const Vector2l *V, unsigned n);
- template bool Polygon_outside<float>(const Vector2f &P, const Vector2f *V, unsigned n);
- template bool Polygon_complete<float>(const Vector2f *V, unsigned n);
- /*
- determine if the polygon of N verticies defined by points V is
- intersected by a line from point p1 to point p2
- intersection argument returns the intersection closest to p1
- */
- bool Polygon_intersects(const Vector2f *V, unsigned N, const Vector2f &p1, const Vector2f &p2, Vector2f &intersection)
- {
- const bool complete = Polygon_complete(V, N);
- if (complete) {
- // if the last point is the same as the first point
- // treat as if the last point wasn't passed in
- N--;
- }
- float intersect_dist_sq = FLT_MAX;
- for (uint8_t i=0; i<N; i++) {
- uint8_t j = i+1;
- if (j >= N) {
- j = 0;
- }
- const Vector2f &v1 = V[i];
- const Vector2f &v2 = V[j];
- // optimisations for common cases
- if (v1.x > p1.x && v2.x > p1.x && v1.x > p2.x && v2.x > p2.x) {
- continue;
- }
- if (v1.y > p1.y && v2.y > p1.y && v1.y > p2.y && v2.y > p2.y) {
- continue;
- }
- if (v1.x < p1.x && v2.x < p1.x && v1.x < p2.x && v2.x < p2.x) {
- continue;
- }
- if (v1.y < p1.y && v2.y < p1.y && v1.y < p2.y && v2.y < p2.y) {
- continue;
- }
- Vector2f intersect_tmp;
- if (Vector2f::segment_intersection(v1,v2,p1,p2,intersect_tmp)) {
- float dist_sq = sq(intersect_tmp.x - p1.x) + sq(intersect_tmp.y - p1.y);
- if (dist_sq < intersect_dist_sq) {
- intersect_dist_sq = dist_sq;
- intersection = intersect_tmp;
- }
- }
- }
- return (intersect_dist_sq < FLT_MAX);
- }
- /*
- return the closest distance that a line from p1 to p2 comes to an
- edge of closed polygon V, defined by N points
- negative numbers indicate the line cross into the polygon with the negative size being the distance from p2 to the intersection point closest to p1
- */
- float Polygon_closest_distance_line(const Vector2f *V, unsigned N, const Vector2f &p1, const Vector2f &p2)
- {
- Vector2f intersection;
- if (Polygon_intersects(V,N,p1,p2,intersection)) {
- return -sqrtf(sq(intersection.x - p2.x) + sq(intersection.y - p2.y));
- }
- float closest_sq = FLT_MAX;
- for (uint8_t i=0; i<N-1; i++) {
- const Vector2f &v1 = V[i];
- const Vector2f &v2 = V[i+1];
- float dist_sq = Vector2f::closest_distance_between_lines_squared(v1, v2, p1, p2);
- if (dist_sq < closest_sq) {
- closest_sq = dist_sq;
- }
- }
- return sqrtf(closest_sq);
- }
- /*
- return the closest distance that point p comes to an edge of closed
- polygon V, defined by N points
- */
- float Polygon_closest_distance_point(const Vector2f *V, unsigned N, const Vector2f &p)
- {
- float closest_sq = FLT_MAX;
- for (uint8_t i=0; i<N-1; i++) {
- const Vector2f &v1 = V[i];
- const Vector2f &v2 = V[i+1];
- float dist_sq = Vector2f::closest_distance_between_line_and_point_squared(v1, v2, p);
- if (dist_sq < closest_sq) {
- closest_sq = dist_sq;
- }
- }
- return sqrtf(closest_sq);
- }
|