123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477 |
- /*
- * Copyright (C) 2016 Intel Corporation. All rights reserved.
- *
- * This file is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This file is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- * See the GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- /*
- * This comment section explains the basic idea behind the implementation.
- *
- * Vectors difference notation
- * ===========================
- * Let v and w be vectors. For readability purposes, unless explicitly
- * otherwise noted, the notation vw will be used to represent w - v.
- *
- * Relationship between a vector and a triangle in 3d space
- * ========================================================
- * Vector in the area of a triangle
- * --------------------------------
- * Let T = (a, b, c) be a triangle, where a, b and c are also vectors and
- * linearly independent. A vector inside that triangle can be written as one of
- * its vertices plus the sum of the positively scaled vectors from that vertex
- * to the other ones. Taking a as the first vertex, a vector p in the area
- * formed by T can be written as:
- *
- * p = a + w_ab * ab + w_ac * ac
- *
- * It's fairly easy to see that if p is in the area formed by T, then w_ab >= 0
- * and w_ac >= 0. That vector p can also be written as:
- *
- * p = b + w_ba * ba + w_bc * bc
- *
- * It's easy to check that the triangle formed by (a + w_ab * ab, b + w_ba *
- * ba, p) is similar to T and, with the correct algebraic manipulations, we can
- * come to the conclusion that:
- *
- * w_ba = 1 - w_ab - w_ac
- *
- * Since we know that w_ba >= 0, then w_ab + w_ac <= 1. Thus:
- *
- * ----------------------------------------------------------
- * | p = a + w_ab * ab + w_ac * ac is in the area of T iff: |
- * | w_ab >= 0 and w_ac >= 0 and w_ab + w_ac <= 1 |
- * ----------------------------------------------------------
- *
- * Proving backwards shouldn't be difficult.
- *
- * Vector p can also be written as:
- *
- * p = (1 - w_ab - w_ba) * a + w_ab * b + w_ba * c
- *
- *
- * Vector that crosses a triangle
- * ------------------------------
- * Let T be the same triangle discussed above and let v be a vector such that:
- *
- * v = x * a + y * b + z * c
- * where x >= 0, y >= 0, z >= 0, and x + y + z > 0.
- *
- * It's geometrically easy to see that v crosses the triangle T. But that can
- * also be verified analytically.
- *
- * The vector v crosses the triangle T iff there's a positive alpha such that
- * alpha * v is in the area formed by T, so we need to prove that such value
- * exists. To find alpha, we solve the equation alpha * v = p, which will lead
- * us to the system, for the variables alpha, w_ab and w_ac:
- *
- * alpha * x = 1 - w_ab - w_ac
- * alpha * y = w_ab
- * alpha * z = w_ac,
- * where w_ab >= 0 and w_ac >= 0 and w_ab + w_ac <= 1
- *
- * That will lead to alpha = 1 / (x + y + z), w_ab = y / (x + y + b) and
- * w_ac = z / (x + y + z) and the following holds:
- * - alpha does exist because x + y + z > 0.
- * - w_ab >= 0 and w_ac >= 0 because y >= 0 and z >= 0 and x + y + z > 0.
- * - 0 <= 1 - w_ab - w_ac <= 1 because 0 <= (y + z) / (x + y + z) <= 1.
- *
- * Thus:
- *
- * ----------------------------------------------------------
- * | v = x * a + y * b + z * c crosses T = (a, b, c), where |
- * | a, b and c are linearly independent, iff: |
- * | x >= 0, y >= 0, z >= 0 and x + y + z > 0 |
- * ----------------------------------------------------------
- *
- * Moreover:
- * - if one of the coefficients is zero, then v crosses the edge formed by the
- * vertices multiplied by the non-zero coefficients.
- * - if two of the coefficients are zero, then v crosses the vertex multiplied
- * by the non-zero coefficient.
- */
- #include <assert.h>
- #include "AP_GeodesicGrid.h"
- /* This was generated with
- * libraries/AP_Math/tools/geodesic_grid/geodesic_grid.py */
- const struct AP_GeodesicGrid::neighbor_umbrella
- AP_GeodesicGrid::_neighbor_umbrellas[3]{
- {{ 9, 8, 7, 12, 14}, 1, 2, 0, 0, 2},
- {{ 1, 2, 4, 5, 3}, 0, 0, 2, 2, 0},
- {{16, 15, 13, 18, 17}, 2, 2, 0, 2, 1},
- };
- /* This was generated with
- * libraries/AP_Math/tools/geodesic_grid/geodesic_grid.py */
- const Matrix3f AP_GeodesicGrid::_inverses[10]{
- {{-0.309017f, 0.500000f, 0.190983f},
- { 0.000000f, 0.000000f, -0.618034f},
- {-0.309017f, -0.500000f, 0.190983f}},
- {{-0.190983f, 0.309017f, -0.500000f},
- {-0.500000f, -0.190983f, 0.309017f},
- { 0.309017f, -0.500000f, -0.190983f}},
- {{-0.618034f, 0.000000f, 0.000000f},
- { 0.190983f, -0.309017f, -0.500000f},
- { 0.190983f, -0.309017f, 0.500000f}},
- {{-0.500000f, 0.190983f, -0.309017f},
- { 0.000000f, -0.618034f, 0.000000f},
- { 0.500000f, 0.190983f, -0.309017f}},
- {{-0.190983f, -0.309017f, -0.500000f},
- {-0.190983f, -0.309017f, 0.500000f},
- { 0.618034f, 0.000000f, 0.000000f}},
- {{-0.309017f, -0.500000f, -0.190983f},
- { 0.190983f, 0.309017f, -0.500000f},
- { 0.500000f, -0.190983f, 0.309017f}},
- {{ 0.309017f, -0.500000f, 0.190983f},
- { 0.000000f, 0.000000f, -0.618034f},
- { 0.309017f, 0.500000f, 0.190983f}},
- {{ 0.190983f, -0.309017f, -0.500000f},
- { 0.500000f, 0.190983f, 0.309017f},
- {-0.309017f, 0.500000f, -0.190983f}},
- {{ 0.500000f, -0.190983f, -0.309017f},
- { 0.000000f, 0.618034f, 0.000000f},
- {-0.500000f, -0.190983f, -0.309017f}},
- {{ 0.309017f, 0.500000f, -0.190983f},
- {-0.500000f, 0.190983f, 0.309017f},
- {-0.190983f, -0.309017f, -0.500000f}},
- };
- /* This was generated with
- * libraries/AP_Math/tools/geodesic_grid/geodesic_grid.py */
- const Matrix3f AP_GeodesicGrid::_mid_inverses[10]{
- {{-0.000000f, 1.000000f, -0.618034f},
- { 0.000000f, -1.000000f, -0.618034f},
- {-0.618034f, 0.000000f, 1.000000f}},
- {{-1.000000f, 0.618034f, -0.000000f},
- {-0.000000f, -1.000000f, 0.618034f},
- { 0.618034f, -0.000000f, -1.000000f}},
- {{-0.618034f, -0.000000f, -1.000000f},
- { 1.000000f, -0.618034f, -0.000000f},
- {-0.618034f, 0.000000f, 1.000000f}},
- {{-1.000000f, -0.618034f, -0.000000f},
- { 1.000000f, -0.618034f, 0.000000f},
- {-0.000000f, 1.000000f, -0.618034f}},
- {{-1.000000f, -0.618034f, 0.000000f},
- { 0.618034f, 0.000000f, 1.000000f},
- { 0.618034f, 0.000000f, -1.000000f}},
- {{-0.618034f, -0.000000f, -1.000000f},
- { 1.000000f, 0.618034f, -0.000000f},
- { 0.000000f, -1.000000f, 0.618034f}},
- {{ 0.000000f, -1.000000f, -0.618034f},
- { 0.000000f, 1.000000f, -0.618034f},
- { 0.618034f, -0.000000f, 1.000000f}},
- {{ 1.000000f, -0.618034f, -0.000000f},
- { 0.000000f, 1.000000f, 0.618034f},
- {-0.618034f, 0.000000f, -1.000000f}},
- {{ 1.000000f, 0.618034f, -0.000000f},
- {-1.000000f, 0.618034f, 0.000000f},
- { 0.000000f, -1.000000f, -0.618034f}},
- {{-0.000000f, 1.000000f, 0.618034f},
- {-1.000000f, -0.618034f, -0.000000f},
- { 0.618034f, 0.000000f, -1.000000f}},
- };
- int AP_GeodesicGrid::section(const Vector3f &v, bool inclusive)
- {
- int i = _triangle_index(v, inclusive);
- if (i < 0) {
- return -1;
- }
- int j = _subtriangle_index(i, v, inclusive);
- if (j < 0) {
- return -1;
- }
- return 4 * i + j;
- }
- int AP_GeodesicGrid::_neighbor_umbrella_component(int idx, int comp_idx)
- {
- if (idx < 3) {
- return _neighbor_umbrellas[idx].components[comp_idx];
- }
- return (_neighbor_umbrellas[idx % 3].components[comp_idx] + 10) % 20;
- }
- int AP_GeodesicGrid::_from_neighbor_umbrella(int idx,
- const Vector3f &v,
- const Vector3f &u,
- bool inclusive)
- {
- /* The following comparisons between the umbrella's first and second
- * vertices' coefficients work for this algorithm because all vertices'
- * vectors are of the same length. */
- if (is_equal(u.x, u.y)) {
- /* If the coefficients of the first and second vertices are equal, then
- * v crosses the first component or the edge formed by the umbrella's
- * pivot and forth vertex. */
- int comp = _neighbor_umbrella_component(idx, 0);
- auto w = _inverses[comp % 10] * v;
- if (comp > 9) {
- w = -w;
- }
- float x0 = w[_neighbor_umbrellas[idx % 3].v0_c0];
- if (is_zero(x0)) {
- if (!inclusive) {
- return -1;
- }
- return comp;
- } else if (x0 < 0) {
- if (!inclusive) {
- return -1;
- }
- return _neighbor_umbrella_component(idx, u.x < u.y ? 3 : 2);
- }
- return comp;
- }
- if (u.y > u.x) {
- /* If the coefficient of the second vertex is greater than the first
- * one's, then v crosses the first, second or third component. */
- int comp = _neighbor_umbrella_component(idx, 1);
- auto w = _inverses[comp % 10] * v;
- if (comp > 9) {
- w = -w;
- }
- float x1 = w[_neighbor_umbrellas[idx % 3].v1_c1];
- float x2 = w[_neighbor_umbrellas[idx % 3].v2_c1];
- if (is_zero(x1)) {
- if (!inclusive) {
- return -1;
- }
- return _neighbor_umbrella_component(idx, x1 < 0 ? 2 : 1);
- } else if (x1 < 0) {
- return _neighbor_umbrella_component(idx, 2);
- }
- if (is_zero(x2)) {
- if (!inclusive) {
- return -1;
- }
- return _neighbor_umbrella_component(idx, x2 > 0 ? 1 : 0);
- } else if (x2 < 0) {
- return _neighbor_umbrella_component(idx, 0);
- }
- return comp;
- } else {
- /* If the coefficient of the second vertex is lesser than the first
- * one's, then v crosses the first, fourth or fifth component. */
- int comp = _neighbor_umbrella_component(idx, 4);
- auto w = _inverses[comp % 10] * v;
- if (comp > 9) {
- w = -w;
- }
- float x4 = w[_neighbor_umbrellas[idx % 3].v4_c4];
- float x0 = w[_neighbor_umbrellas[idx % 3].v0_c4];
- if (is_zero(x4)) {
- if (!inclusive) {
- return -1;
- }
- return _neighbor_umbrella_component(idx, x4 < 0 ? 0 : 4);
- } else if (x4 < 0) {
- return _neighbor_umbrella_component(idx, 0);
- }
- if (is_zero(x0)) {
- if (!inclusive) {
- return -1;
- }
- return _neighbor_umbrella_component(idx, x0 > 0 ? 4 : 3);
- } else if (x0 < 0) {
- return _neighbor_umbrella_component(idx, 3);
- }
- return comp;
- }
- }
- int AP_GeodesicGrid::_triangle_index(const Vector3f &v, bool inclusive)
- {
- /* w holds the coordinates of v with respect to the basis comprised by the
- * vectors of T_i */
- auto w = _inverses[0] * v;
- int zero_count = 0;
- int balance = 0;
- int umbrella = -1;
- if (is_zero(w.x)) {
- zero_count++;
- } else if (w.x > 0) {
- balance++;
- } else {
- balance--;
- }
- if (is_zero(w.y)) {
- zero_count++;
- } else if (w.y > 0) {
- balance++;
- } else {
- balance--;
- }
- if (is_zero(w.z)) {
- zero_count++;
- } else if (w.z > 0) {
- balance++;
- } else {
- balance--;
- }
- switch (balance) {
- case 3:
- /* All coefficients are positive, thus return the first triangle. */
- return 0;
- case -3:
- /* All coefficients are negative, which means that the coefficients for
- * -w are positive, thus return the first triangle's opposite. */
- return 10;
- case 2:
- /* Two coefficients are positive and one is zero, thus v crosses one of
- * the edges of the first triangle. */
- return inclusive ? 0 : -1;
- case -2:
- /* Analogous to the previous case, but for the opposite of the first
- * triangle. */
- return inclusive ? 10 : -1;
- case 1:
- /* There are two possible cases when balance is 1:
- *
- * 1) Two coefficients are zero, which means v crosses one of the
- * vertices of the first triangle.
- *
- * 2) Two coefficients are positive and one is negative. Let a and b be
- * vertices with positive coefficients and c the one with the negative
- * coefficient. That means that v crosses the triangle formed by a, b
- * and -c. The vector -c happens to be the 3-th vertex, with respect to
- * (a, b), of the first triangle's neighbor umbrella with respect to a
- * and b. Thus, v crosses one of the components of that umbrella. */
- if (zero_count == 2) {
- return inclusive ? 0 : -1;
- }
- if (!is_zero(w.x) && w.x < 0) {
- umbrella = 1;
- } else if (!is_zero(w.y) && w.y < 0) {
- umbrella = 2;
- } else {
- umbrella = 0;
- }
- break;
- case -1:
- /* Analogous to the previous case, but for the opposite of the first
- * triangle. */
- if (zero_count == 2) {
- return inclusive ? 10 : -1;
- }
- if (!is_zero(w.x) && w.x > 0) {
- umbrella = 4;
- } else if (!is_zero(w.y) && w.y > 0) {
- umbrella = 5;
- } else {
- umbrella = 3;
- }
- w = -w;
- break;
- case 0:
- /* There are two possible cases when balance is 1:
- *
- * 1) The vector v is the null vector, which doesn't cross any section.
- *
- * 2) One coefficient is zero, another is positive and yet another is
- * negative. Let a, b and c be the respective vertices for those
- * coefficients, then the statements in case (2) for when balance is 1
- * are also valid here.
- */
- if (zero_count == 3) {
- return -1;
- }
- if (!is_zero(w.x) && w.x < 0) {
- umbrella = 1;
- } else if (!is_zero(w.y) && w.y < 0) {
- umbrella = 2;
- } else {
- umbrella = 0;
- }
- break;
- }
- assert(umbrella >= 0);
- switch (umbrella % 3) {
- case 0:
- w.z = -w.z;
- break;
- case 1:
- w(w.y, w.z, -w.x);
- break;
- case 2:
- w(w.z, w.x, -w.y);
- break;
- }
- return _from_neighbor_umbrella(umbrella, v, w, inclusive);
- }
- int AP_GeodesicGrid::_subtriangle_index(const unsigned int triangle_index,
- const Vector3f &v,
- bool inclusive)
- {
- /* w holds the coordinates of v with respect to the basis comprised by the
- * vectors of the middle triangle of T_i where i is triangle_index */
- auto w = _mid_inverses[triangle_index % 10] * v;
- if (triangle_index > 9) {
- w = -w;
- }
- if ((is_zero(w.x) || is_zero(w.y) || is_zero(w.z)) && !inclusive) {
- return -1;
- }
- /* At this point, we know that v crosses the icosahedron triangle pointed
- * by triangle_index. Thus, we can geometrically see that if v doesn't
- * cross its middle triangle, then one of the coefficients will be negative
- * and the other ones positive. Let a and b be the non-negative
- * coefficients and c the negative one. In that case, v will cross the
- * triangle with vertices (a, b, -c). Since we know that v crosses the
- * icosahedron triangle and the only sub-triangle that contains the set of
- * points (seen as vectors) that cross the triangle (a, b, -c) is the
- * middle triangle's neighbor with respect to a and b, then that
- * sub-triangle is the one crossed by v. */
- if (!is_zero(w.x) && w.x < 0) {
- return 3;
- }
- if (!is_zero(w.y) && w.y < 0) {
- return 1;
- }
- if (!is_zero(w.z) && w.z < 0) {
- return 2;
- }
- /* If x >= 0 and y >= 0 and z >= 0, then v crosses the middle triangle. */
- return 0;
- }
|