123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- /*
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- // Code by Jon Challinger
- // Modified by Paul Riseborough
- //
- #include <AP_HAL/AP_HAL.h>
- #include "AP_RollController.h"
- extern const AP_HAL::HAL& hal;
- const AP_Param::GroupInfo AP_RollController::var_info[] = {
- // @Param: TCONST
- // @DisplayName: Roll Time Constant
- // @Description: Time constant in seconds from demanded to achieved roll angle. Most models respond well to 0.5. May be reduced for faster responses, but setting lower than a model can achieve will not help.
- // @Range: 0.4 1.0
- // @Units: s
- // @Increment: 0.1
- // @User: Advanced
- AP_GROUPINFO("TCONST", 0, AP_RollController, gains.tau, 0.5f),
- // @Param: P
- // @DisplayName: Proportional Gain
- // @Description: Proportional gain from roll angle demands to ailerons. Higher values allow more servo response but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode.
- // @Range: 0.1 4.0
- // @Increment: 0.1
- // @User: User
- AP_GROUPINFO("P", 1, AP_RollController, gains.P, 1.0f),
- // @Param: D
- // @DisplayName: Damping Gain
- // @Description: Damping gain from roll acceleration to ailerons. Higher values reduce rolling in turbulence, but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode.
- // @Range: 0 0.2
- // @Increment: 0.01
- // @User: User
- AP_GROUPINFO("D", 2, AP_RollController, gains.D, 0.08f),
- // @Param: I
- // @DisplayName: Integrator Gain
- // @Description: Integrator gain from long-term roll angle offsets to ailerons. Higher values "trim" out offsets faster but can cause oscillations. Automatically set and adjusted by AUTOTUNE mode.
- // @Range: 0 1.0
- // @Increment: 0.05
- // @User: User
- AP_GROUPINFO("I", 3, AP_RollController, gains.I, 0.3f),
- // @Param: RMAX
- // @DisplayName: Maximum Roll Rate
- // @Description: Maximum roll rate that the roll controller demands (degrees/sec) in ACRO mode.
- // @Range: 0 180
- // @Units: deg/s
- // @Increment: 1
- // @User: Advanced
- AP_GROUPINFO("RMAX", 4, AP_RollController, gains.rmax, 0),
- // @Param: IMAX
- // @DisplayName: Integrator limit
- // @Description: Limit of roll integrator gain in centi-degrees of servo travel. Servos are assumed to have +/- 4500 centi-degrees of travel, so a value of 3000 allows trim of up to 2/3 of servo travel range.
- // @Range: 0 4500
- // @Increment: 1
- // @User: Advanced
- AP_GROUPINFO("IMAX", 5, AP_RollController, gains.imax, 3000),
- // @Param: FF
- // @DisplayName: Feed forward Gain
- // @Description: Gain from demanded rate to aileron output.
- // @Range: 0.1 4.0
- // @Increment: 0.1
- // @User: User
- AP_GROUPINFO("FF", 6, AP_RollController, gains.FF, 0.0f),
- AP_GROUPEND
- };
- /*
- internal rate controller, called by attitude and rate controller
- public functions
- */
- int32_t AP_RollController::_get_rate_out(float desired_rate, float scaler, bool disable_integrator)
- {
- uint32_t tnow = AP_HAL::millis();
- uint32_t dt = tnow - _last_t;
- if (_last_t == 0 || dt > 1000) {
- dt = 0;
- }
- _last_t = tnow;
-
- // Calculate equivalent gains so that values for K_P and K_I can be taken across from the old PID law
- // No conversion is required for K_D
- float ki_rate = gains.I * gains.tau;
- float eas2tas = _ahrs.get_EAS2TAS();
- float kp_ff = MAX((gains.P - gains.I * gains.tau) * gains.tau - gains.D , 0) / eas2tas;
- float k_ff = gains.FF / eas2tas;
- float delta_time = (float)dt * 0.001f;
- // Get body rate vector (radians/sec)
- float omega_x = _ahrs.get_gyro().x;
-
- // Calculate the roll rate error (deg/sec) and apply gain scaler
- float achieved_rate = ToDeg(omega_x);
- float rate_error = (desired_rate - achieved_rate) * scaler;
-
- // Get an airspeed estimate - default to zero if none available
- float aspeed;
- if (!_ahrs.airspeed_estimate(&aspeed)) {
- aspeed = 0.0f;
- }
- // Multiply roll rate error by _ki_rate, apply scaler and integrate
- // Scaler is applied before integrator so that integrator state relates directly to aileron deflection
- // This means aileron trim offset doesn't change as the value of scaler changes with airspeed
- // Don't integrate if in stabilise mode as the integrator will wind up against the pilots inputs
- if (!disable_integrator && ki_rate > 0) {
- //only integrate if gain and time step are positive and airspeed above min value.
- if (dt > 0 && aspeed > float(aparm.airspeed_min)) {
- float integrator_delta = rate_error * ki_rate * delta_time * scaler;
- // prevent the integrator from increasing if surface defln demand is above the upper limit
- if (_last_out < -45) {
- integrator_delta = MAX(integrator_delta , 0);
- } else if (_last_out > 45) {
- // prevent the integrator from decreasing if surface defln demand is below the lower limit
- integrator_delta = MIN(integrator_delta, 0);
- }
- _pid_info.I += integrator_delta;
- }
- } else {
- _pid_info.I = 0;
- }
-
- // Scale the integration limit
- float intLimScaled = gains.imax * 0.01f;
- // Constrain the integrator state
- _pid_info.I = constrain_float(_pid_info.I, -intLimScaled, intLimScaled);
-
- // Calculate the demanded control surface deflection
- // Note the scaler is applied again. We want a 1/speed scaler applied to the feed-forward
- // path, but want a 1/speed^2 scaler applied to the rate error path.
- // This is because acceleration scales with speed^2, but rate scales with speed.
- _pid_info.D = rate_error * gains.D * scaler;
- _pid_info.P = desired_rate * kp_ff * scaler;
- _pid_info.FF = desired_rate * k_ff * scaler;
- _pid_info.target = desired_rate;
- _pid_info.actual = achieved_rate;
- _last_out = _pid_info.FF + _pid_info.P + _pid_info.D;
- if (autotune.running && aspeed > aparm.airspeed_min) {
- // let autotune have a go at the values
- // Note that we don't pass the integrator component so we get
- // a better idea of how much the base PD controller
- // contributed
- autotune.update(desired_rate, achieved_rate, _last_out);
- }
- _last_out += _pid_info.I;
-
- // Convert to centi-degrees and constrain
- return constrain_float(_last_out * 100, -4500, 4500);
- }
- /*
- Function returns an equivalent elevator deflection in centi-degrees in the range from -4500 to 4500
- A positive demand is up
- Inputs are:
- 1) desired roll rate in degrees/sec
- 2) control gain scaler = scaling_speed / aspeed
- */
- int32_t AP_RollController::get_rate_out(float desired_rate, float scaler)
- {
- return _get_rate_out(desired_rate, scaler, false);
- }
- /*
- Function returns an equivalent aileron deflection in centi-degrees in the range from -4500 to 4500
- A positive demand is up
- Inputs are:
- 1) demanded bank angle in centi-degrees
- 2) control gain scaler = scaling_speed / aspeed
- 3) boolean which is true when stabilise mode is active
- 4) minimum FBW airspeed (metres/sec)
- */
- int32_t AP_RollController::get_servo_out(int32_t angle_err, float scaler, bool disable_integrator)
- {
- if (gains.tau < 0.1f) {
- gains.tau.set(0.1f);
- }
-
- // Calculate the desired roll rate (deg/sec) from the angle error
- float desired_rate = angle_err * 0.01f / gains.tau;
- // Limit the demanded roll rate
- if (gains.rmax && desired_rate < -gains.rmax) {
- desired_rate = - gains.rmax;
- } else if (gains.rmax && desired_rate > gains.rmax) {
- desired_rate = gains.rmax;
- }
- return _get_rate_out(desired_rate, scaler, disable_integrator);
- }
- void AP_RollController::reset_I()
- {
- _pid_info.I = 0;
- }
|