123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- % IMPORTANT - This script requires the Matlab symbolic toolbox
- % Author: Paul Riseborough
- % Last Modified: 16 Feb 2015
- % Derivation of a 3-axis gimbal attitude estimator using a local NED earth Tangent
- % Frame. Based on use of a rotation vector for attitude estimation as described
- % here:
- % Mark E. Pittelkau. "Rotation Vector in Attitude Estimation",
- % Journal of Guidance, Control, and Dynamics, Vol. 26, No. 6 (2003),
- % pp. 855-860.
- % The gimbal is assumed to have the following characteristics:
- % A three axis gimbal having a fixed top plate mounted to the vehicle body with a magnetometer
- % Yaw, roll and pitch degrees of freedom (yaw, roll, pitch Euler sequence)
- % with angle measurements on each gimbal axis
- % IMU measuring delta angles and delta velocites mounted on the
- % camera/sensor assembly
- % When the gimbal joints are all at zero degrees, the sensor assembly X,Y,Z
- % axis is aligned with the top plate X,Y,Z axis
- % State vector:
- % error rotation vector - X,Y,Z (rad)
- % Velocity - North, East, Down (m/s)
- % Delta Angle bias - X,Y,Z (rad)
- % Delta Velocity Bias - X,Y,Z (m/s)
- % Observations:
- % NED velocity - N,E,D (m/s)
- % sensor fixed magnetic field vector of base - X,Y,Z
- % Time varying parameters:
- % XYZ delta angle measurements in sensor axes - rad
- % XYZ delta velocity measurements in sensor axes - m/sec
- % yaw, roll, pitch gimbal rotation angles
- %% define symbolic variables and constants
- clear all;
- % specify if we want to incorporate accerometer bias estimation into the
- % filter, 0 = no, 1 = yes
- f_accBiasEst = 0;
- syms dax day daz real % IMU delta angle measurements in sensor axes - rad
- syms dvx dvy dvz real % IMU delta velocity measurements in sensor axes - m/sec
- syms q0 q1 q2 q3 real % quaternions defining attitude of sensor axes relative to local NED
- syms vn ve vd real % NED velocity - m/sec
- syms dax_b day_b daz_b real % delta angle bias - rad
- syms dvx_b dvy_b dvz_b real % delta velocity bias - m/sec
- syms dt real % IMU time step - sec
- syms gravity real % gravity - m/sec^2
- syms daxNoise dayNoise dazNoise dvxNoise dvyNoise dvzNoise real; % IMU delta angle and delta velocity measurement noise
- syms vwn vwe real; % NE wind velocity - m/sec
- syms magX magY magZ real; % XYZ top plate magnetic field measurements - milligauss
- syms magN magE magD real; % NED earth fixed magnetic field components - milligauss
- syms R_VN R_VE R_VD real % variances for NED velocity measurements - (m/sec)^2
- syms R_MAG real % variance for magnetic flux measurements - milligauss^2
- syms rotErr1 rotErr2 rotErr3 real; % error rotation vector
- syms decl real; % earth magnetic field declination from true north
- syms gPsi gPhi gTheta real; % gimbal joint angles yaw, roll, pitch (rad)
- %% define the process equations
- % define the measured Delta angle and delta velocity vectors
- dAngMeas = [dax; day; daz];
- dVelMeas = [dvx; dvy; dvz];
- % define the delta angle bias errors
- dAngBias = [dax_b; day_b; daz_b];
- % define the delta velocity bias errors
- if (f_accBiasEst > 0)
- dVelBias = [dvx_b; dvy_b; dvz_b];
- else
- dVelBias = [0; 0; 0];
- end
- % define the quaternion rotation vector for the state estimate
- estQuat = [q0;q1;q2;q3];
- % define the attitude error rotation vector, where error = truth - estimate
- errRotVec = [rotErr1;rotErr2;rotErr3];
- % define the attitude error quaternion using a first order linearisation
- errQuat = [1;0.5*errRotVec];
- % Define the truth quaternion as the estimate + error
- truthQuat = QuatMult(estQuat, errQuat);
- % derive the truth sensor to nav direction cosine matrix
- Tsn = Quat2Tbn(truthQuat);
- % define the truth delta angle
- % ignore coning acompensation as these effects are negligible in terms of
- % covariance growth for our application and grade of sensor
- dAngTruth = dAngMeas - dAngBias - [daxNoise;dayNoise;dazNoise];
- % Define the truth delta velocity
- dVelTruth = dVelMeas - dVelBias - [dvxNoise;dvyNoise;dvzNoise];
- % define the attitude update equations
- % use a first order expansion of rotation to calculate the quaternion increment
- % acceptable for propagation of covariances
- deltaQuat = [1;
- 0.5*dAngTruth(1);
- 0.5*dAngTruth(2);
- 0.5*dAngTruth(3);
- ];
- truthQuatNew = QuatMult(truthQuat,deltaQuat);
- % calculate the updated attitude error quaternion with respect to the previous estimate
- errQuatNew = QuatDivide(truthQuatNew,estQuat);
- % change to a rotaton vector - this is the error rotation vector updated state
- errRotNew = 2 * [errQuatNew(2);errQuatNew(3);errQuatNew(4)];
- % define the velocity update equations
- % ignore coriolis terms for linearisation purposes
- vNew = [vn;ve;vd] + [0;0;gravity]*dt + Tsn*dVelTruth;
- % define the IMU bias error update equations
- dabNew = dAngBias;
- dvbNew = dVelBias;
- % Define the state vector & number of states
- if (f_accBiasEst > 0)
- stateVector = [errRotVec;vn;ve;vd;dAngBias;dVelBias];
- else
- stateVector = [errRotVec;vn;ve;vd;dAngBias];
- end
- nStates=numel(stateVector);
- save 'symeqns.mat';
- %% derive the filter Jacobians
- % Define the control (disturbance) vector. Error growth in the inertial
- % solution is assumed to be driven by 'noise' in the delta angles and
- % velocities, after bias effects have been removed. This is OK because we
- % have sensor bias accounted for in the state equations.
- distVector = [daxNoise;dayNoise;dazNoise;dvxNoise;dvyNoise;dvzNoise];
- % derive the control(disturbance) influence matrix
- if (f_accBiasEst > 0)
- predictedState = [errRotNew;vNew;dabNew;dvbNew];
- else
- predictedState = [errRotNew;vNew;dabNew];
- end
- G = jacobian(predictedState, distVector);
- G = subs(G, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0});
- % derive the state error matrix
- distMatrix = diag(distVector);
- Q = G*distMatrix*transpose(G);
- %matlabFunction(Q,'file','calcQ.m');
- % derive the state transition matrix
- vNew = subs(vNew,{'daxNoise','dayNoise','dazNoise','dvxNoise','dvyNoise','dvzNoise'}, {0,0,0,0,0,0});
- errRotNew = subs(errRotNew,{'daxNoise','dayNoise','dazNoise','dvxNoise','dvyNoise','dvzNoise'}, {0,0,0,0,0,0});
- % Define the state vector & number of states
- if (f_accBiasEst)
- predictedState = [errRotNew;vNew;dabNew;dvbNew];
- else
- predictedState = [errRotNew;vNew;dabNew];
- end
- F = jacobian(predictedState, stateVector);
- F = subs(F, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0});
- %matlabFunction(F,'file','calcF.m');
- %% Derive the predicted covariance
- % This reduces the number of floating point operations by a factor of 4 or
- % more compared to using the standard matrix operations in code
- % define a symbolic covariance matrix using strings to represent
- % '_l_' to represent '( '
- % '_c_' to represent ,
- % '_r_' to represent ')'
- % these can be substituted later to create executable code
- for rowIndex = 1:nStates
- for colIndex = 1:nStates
- eval(['syms OP_l_',num2str(rowIndex),'_c_',num2str(colIndex), '_r_ real']);
- eval(['P(',num2str(rowIndex),',',num2str(colIndex), ') = OP_l_',num2str(rowIndex),'_c_',num2str(colIndex),'_r_;']);
- end
- end
- % Derive the predicted covariance matrix using the standard equation
- PP = F*P*transpose(F) + Q;
- %matlabFunction(PP,'file','calcP.m');
- ccode(PP,'file','calcP.c');
- FixCode('calcP');
- % free up memory
- clear all;
- reset(symengine);
- %% derive equations for fusion of magnetic deviation measurement
- load('symeqns.mat');
- % Define rotation from magnetometer to yaw gimbal
- T3 = [ cos(gPsi) sin(gPsi) 0; ...
- -sin(gPsi) cos(gPsi) 0; ...
- 0 0 1];
- % Define rotation from yaw gimbal to roll gimbal
- T1 = [ 1 0 0; ...
- 0 cos(gPhi) sin(gPhi); ...
- 0 -sin(gPhi) cos(gPhi)];
- % Define rotation from roll gimbal to pitch gimbal
- T2 = [ cos(gTheta) 0 -sin(gTheta); ...
- 0 1 0; ...
- sin(gTheta) 0 cos(gTheta)];
- % Define rotation from magnetometer to sensor using a 312 rotation sequence
- Tms = T2*T1*T3;
- % Define rotation from magnetometer to nav axes
- Tmn = Tsn*Tms;
- save 'symeqns.mat';
- % rotate magentic field measured at top plate into nav axes
- magMeasNED = Tmn*[magX;magY;magZ];
- % the predicted measurement is the angle wrt magnetic north of the horizontal
- % component of the measured field
- angMeas = tan(magMeasNED(2)/magMeasNED(1)) - decl;
- H_MAG = jacobian(angMeas,stateVector); % measurement Jacobian
- H_MAG = subs(H_MAG, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0});
- H_MAG = H_MAG(1:3);
- H_MAG = simplify(H_MAG);
- % matlabFunction(H_MAG,'file','calcH_MAG.m');
- ccode(H_MAG,'file','calcH_MAG.c');
- FixCode('calcH_MAG');
- % free up memory
- clear all;
- reset(symengine);
- %% generate helper functions
- load 'symeqns.mat';
- matlabFunction(Tms,'file','calcTms.m');
- Tmn = subs(Tmn, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0});
- matlabFunction(Tmn,'file','calcTmn.m');
|