123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- % IMPORTANT - This script requires the Matlab symbolic toolbox
- % Author: Paul Riseborough
- % Last Modified: 16 Feb 2015
- % Derivation of a navigation EKF using a local NED earth Tangent Frame for
- % the initial alignment and gyro bias estimation from a moving platform
- % Based on use of a rotation vector for attitude estimation as described
- % here:
- %
- % Mark E. Pittelkau. "Rotation Vector in Attitude Estimation",
- % Journal of Guidance, Control, and Dynamics, Vol. 26, No. 6 (2003),
- % pp. 855-860.
- %
- % The benefits for use of rotation error vector over use of a four parameter
- % quaternion representation of the estiamted orientation are:
- % a) Reduced computational load
- % b) Improved stability
- % c) The ability to recover faster from large orientation errors. This
- % makes this filter particularly suitable where the initial alignment is
- % uncertain
- % State vector:
- % error rotation vector
- % Velocity - North, East, Down (m/s)
- % Delta Angle bias - X,Y,Z (rad)
- % Observations:
- % NED velocity - N,E,D (m/s)
- % body fixed magnetic field vector - X,Y,Z
- % Time varying parameters:
- % XYZ delta angle measurements in body axes - rad
- % XYZ delta velocity measurements in body axes - m/sec
- % magnetic declination
- clear all;
- %% define symbolic variables and constants
- syms dax day daz real % IMU delta angle measurements in body axes - rad
- syms dvx dvy dvz real % IMU delta velocity measurements in body axes - m/sec
- syms q0 q1 q2 q3 real % quaternions defining attitude of body axes relative to local NED
- syms vn ve vd real % NED velocity - m/sec
- syms dax_b day_b daz_b real % delta angle bias - rad
- syms dvx_b dvy_b dvz_b real % delta velocity bias - m/sec
- syms dt real % IMU time step - sec
- syms gravity real % gravity - m/sec^2
- syms daxNoise dayNoise dazNoise dvxNoise dvyNoise dvzNoise real; % IMU delta angle and delta velocity measurement noise
- syms vwn vwe real; % NE wind velocity - m/sec
- syms magX magY magZ real; % XYZ body fixed magnetic field measurements - milligauss
- syms magN magE magD real; % NED earth fixed magnetic field components - milligauss
- syms R_VN R_VE R_VD real % variances for NED velocity measurements - (m/sec)^2
- syms R_MAG real % variance for magnetic flux measurements - milligauss^2
- syms rotErr1 rotErr2 rotErr3 real; % error rotation vector
- %% define the process equations
- % define the measured Delta angle and delta velocity vectors
- dAngMeas = [dax; day; daz];
- dVelMeas = [dvx; dvy; dvz];
- % define the delta angle bias errors
- dAngBias = [dax_b; day_b; daz_b];
- % define the quaternion rotation vector for the state estimate
- estQuat = [q0;q1;q2;q3];
- % define the attitude error rotation vector, where error = truth - estimate
- errRotVec = [rotErr1;rotErr2;rotErr3];
- % define the attitude error quaternion using a first order linearisation
- errQuat = [1;0.5*errRotVec];
- % Define the truth quaternion as the estimate + error
- truthQuat = QuatMult(estQuat, errQuat);
- % derive the truth body to nav direction cosine matrix
- Tbn = Quat2Tbn(truthQuat);
- % define the truth delta angle
- % ignore coning acompensation as these effects are negligible in terms of
- % covariance growth for our application and grade of sensor
- dAngTruth = dAngMeas - dAngBias - [daxNoise;dayNoise;dazNoise];
- % Define the truth delta velocity
- dVelTruth = dVelMeas - [dvxNoise;dvyNoise;dvzNoise];
- % define the attitude update equations
- % use a first order expansion of rotation to calculate the quaternion increment
- % acceptable for propagation of covariances
- deltaQuat = [1;
- 0.5*dAngTruth(1);
- 0.5*dAngTruth(2);
- 0.5*dAngTruth(3);
- ];
- truthQuatNew = QuatMult(truthQuat,deltaQuat);
- % calculate the updated attitude error quaternion with respect to the previous estimate
- errQuatNew = QuatDivide(truthQuatNew,estQuat);
- % change to a rotaton vector - this is the error rotation vector updated state
- errRotNew = 2 * [errQuatNew(2);errQuatNew(3);errQuatNew(4)];
- % define the velocity update equations
- % ignore coriolis terms for linearisation purposes
- vNew = [vn;ve;vd] + [0;0;gravity]*dt + Tbn*dVelTruth;
- % define the IMU bias error update equations
- dabNew = [dax_b; day_b; daz_b];
- % Define the state vector & number of states
- stateVector = [errRotVec;vn;ve;vd;dAngBias];
- nStates=numel(stateVector);
- %% derive the covariance prediction equation
- % This reduces the number of floating point operations by a factor of 6 or
- % more compared to using the standard matrix operations in code
- % Define the control (disturbance) vector. Error growth in the inertial
- % solution is assumed to be driven by 'noise' in the delta angles and
- % velocities, after bias effects have been removed. This is OK because we
- % have sensor bias accounted for in the state equations.
- distVector = [daxNoise;dayNoise;dazNoise;dvxNoise;dvyNoise;dvzNoise];
- % derive the control(disturbance) influence matrix
- G = jacobian([errRotNew;vNew;dabNew], distVector);
- G = subs(G, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0});
- % derive the state error matrix
- distMatrix = diag(distVector);
- Q = G*distMatrix*transpose(G);
- f = matlabFunction(Q,'file','calcQ.m');
- % derive the state transition matrix
- vNew = subs(vNew,{'daxNoise','dayNoise','dazNoise','dvxNoise','dvyNoise','dvzNoise'}, {0,0,0,0,0,0});
- errRotNew = subs(errRotNew,{'daxNoise','dayNoise','dazNoise','dvxNoise','dvyNoise','dvzNoise'}, {0,0,0,0,0,0});
- F = jacobian([errRotNew;vNew;dabNew], stateVector);
- F = subs(F, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0});
- f = matlabFunction(F,'file','calcF.m');
- % define a symbolic covariance matrix using strings to represent
- % '_l_' to represent '( '
- % '_c_' to represent ,
- % '_r_' to represent ')'
- % these can be substituted later to create executable code
- % for rowIndex = 1:nStates
- % for colIndex = 1:nStates
- % eval(['syms OP_l_',num2str(rowIndex),'_c_',num2str(colIndex), '_r_ real']);
- % eval(['P(',num2str(rowIndex),',',num2str(colIndex), ') = OP_l_',num2str(rowIndex),'_c_',num2str(colIndex),'_r_;']);
- % end
- % end
- % Derive the predicted covariance matrix using the standard equation
- % nextP = F*P*transpose(F) + Q;
- % f = matlabFunction(nextP,'file','calcP.m');
- %% derive equations for fusion of magnetic deviation measurement
- % rotate body measured field into earth axes
- magMeasNED = Tbn*[magX;magY;magZ];
- % the predicted measurement is the angle wrt true north of the horizontal
- % component of the measured field
- angMeas = tan(magMeasNED(2)/magMeasNED(1));
- H_MAG = jacobian(angMeas,stateVector); % measurement Jacobian
- H_MAG = subs(H_MAG, {'rotErr1', 'rotErr2', 'rotErr3'}, {0,0,0});
- f = matlabFunction(H_MAG,'file','calcH_MAG.m');
|