12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502 |
- #include <AP_HAL/AP_HAL.h>
- #include "AC_PosControl.h"
- #include <AP_Math/AP_Math.h>
- #include <AP_Logger/AP_Logger.h>
- #include "../../ArduSub/Sub.h"
- extern const AP_HAL::HAL& hal;
- #if APM_BUILD_TYPE(APM_BUILD_ArduPlane)
- // default gains for Plane
- # define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default
- # define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default
- # define POSCONTROL_ACC_Z_P 0.3f // vertical acceleration controller P gain default
- # define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default
- # define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default
- # define POSCONTROL_ACC_Z_IMAX 800 // vertical acceleration controller IMAX gain default
- # define POSCONTROL_ACC_Z_FILT_HZ 10.0f // vertical acceleration controller input filter default
- # define POSCONTROL_ACC_Z_DT 0.02f // vertical acceleration controller dt default
- # define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default
- # define POSCONTROL_VEL_XY_P 1.4f // horizontal velocity controller P gain default
- # define POSCONTROL_VEL_XY_I 0.7f // horizontal velocity controller I gain default
- # define POSCONTROL_VEL_XY_D 0.35f // horizontal velocity controller D gain default
- # define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default
- # define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter
- # define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D
- #elif APM_BUILD_TYPE(APM_BUILD_ArduSub)
- // default gains for Sub
- # define POSCONTROL_POS_Z_P 3.0f // vertical position controller P gain default
- # define POSCONTROL_VEL_Z_P 8.0f // vertical velocity controller P gain default
- # define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default
- # define POSCONTROL_ACC_Z_I 0.1f // vertical acceleration controller I gain default
- # define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default
- # define POSCONTROL_ACC_Z_IMAX 100 // vertical acceleration controller IMAX gain default
- # define POSCONTROL_ACC_Z_FILT_HZ 20.0f // vertical acceleration controller input filter default
- # define POSCONTROL_ACC_Z_DT 0.0025f // vertical acceleration controller dt default
- # define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default
- # define POSCONTROL_VEL_XY_P 1.0f // horizontal velocity controller P gain default
- # define POSCONTROL_VEL_XY_I 0.5f // horizontal velocity controller I gain default
- # define POSCONTROL_VEL_XY_D 0.0f // horizontal velocity controller D gain default
- # define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default
- # define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter
- # define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D
- #else
- // default gains for Copter / TradHeli
- # define POSCONTROL_POS_Z_P 1.0f // vertical position controller P gain default
- # define POSCONTROL_VEL_Z_P 5.0f // vertical velocity controller P gain default
- # define POSCONTROL_ACC_Z_P 0.5f // vertical acceleration controller P gain default
- # define POSCONTROL_ACC_Z_I 1.0f // vertical acceleration controller I gain default
- # define POSCONTROL_ACC_Z_D 0.0f // vertical acceleration controller D gain default
- # define POSCONTROL_ACC_Z_IMAX 800 // vertical acceleration controller IMAX gain default
- # define POSCONTROL_ACC_Z_FILT_HZ 20.0f // vertical acceleration controller input filter default
- # define POSCONTROL_ACC_Z_DT 0.0025f // vertical acceleration controller dt default
- # define POSCONTROL_POS_XY_P 1.0f // horizontal position controller P gain default
- # define POSCONTROL_VEL_XY_P 2.0f // horizontal velocity controller P gain default
- # define POSCONTROL_VEL_XY_I 1.0f // horizontal velocity controller I gain default
- # define POSCONTROL_VEL_XY_D 0.5f // horizontal velocity controller D gain default
- # define POSCONTROL_VEL_XY_IMAX 1000.0f // horizontal velocity controller IMAX gain default
- # define POSCONTROL_VEL_XY_FILT_HZ 5.0f // horizontal velocity controller input filter
- # define POSCONTROL_VEL_XY_FILT_D_HZ 5.0f // horizontal velocity controller input filter for D
- #endif
- const AP_Param::GroupInfo AC_PosControl::var_info[] = {
- // 0 was used for HOVER
- // @Param: _ACC_XY_FILT
- // @DisplayName: XY Acceleration filter cutoff frequency
- // @Description: Lower values will slow the response of the navigation controller and reduce twitchiness
- // @Units: Hz
- // @Range: 0.5 5
- // @Increment: 0.1
- // @User: Advanced
- AP_GROUPINFO("_ACC_XY_FILT", 1, AC_PosControl, _accel_xy_filt_hz, POSCONTROL_ACCEL_FILTER_HZ),
- // @Param: _POSZ_P
- // @DisplayName: Position (vertical) controller P gain
- // @Description: Position (vertical) controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller
- // @Range: 1.000 3.000
- // @User: Standard
- AP_SUBGROUPINFO(_p_pos_z, "_POSZ_", 2, AC_PosControl, AC_P),
- // @Param: _VELZ_P
- // @DisplayName: Velocity (vertical) controller P gain
- // @Description: Velocity (vertical) controller P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller
- // @Range: 1.000 8.000
- // @User: Standard
- AP_SUBGROUPINFO(_p_vel_z, "_VELZ_", 3, AC_PosControl, AC_P),
- // @Param: _ACCZ_P
- // @DisplayName: Acceleration (vertical) controller P gain
- // @Description: Acceleration (vertical) controller P gain. Converts the difference between desired vertical acceleration and actual acceleration into a motor output
- // @Range: 0.500 1.500
- // @Increment: 0.05
- // @User: Standard
- // @Param: _ACCZ_I
- // @DisplayName: Acceleration (vertical) controller I gain
- // @Description: Acceleration (vertical) controller I gain. Corrects long-term difference in desired vertical acceleration and actual acceleration
- // @Range: 0.000 3.000
- // @User: Standard
- // @Param: _ACCZ_IMAX
- // @DisplayName: Acceleration (vertical) controller I gain maximum
- // @Description: Acceleration (vertical) controller I gain maximum. Constrains the maximum pwm that the I term will generate
- // @Range: 0 1000
- // @Units: d%
- // @User: Standard
- // @Param: _ACCZ_D
- // @DisplayName: Acceleration (vertical) controller D gain
- // @Description: Acceleration (vertical) controller D gain. Compensates for short-term change in desired vertical acceleration vs actual acceleration
- // @Range: 0.000 0.400
- // @User: Standard
- // @Param: _ACCZ_FILT
- // @DisplayName: Acceleration (vertical) controller filter
- // @Description: Filter applied to acceleration to reduce noise. Lower values reduce noise but add delay.
- // @Range: 1.000 100.000
- // @Units: Hz
- // @User: Standard
- AP_SUBGROUPINFO(_pid_accel_z, "_ACCZ_", 4, AC_PosControl, AC_PID),
- // @Param: _POSXY_P
- // @DisplayName: Position (horizonal) controller P gain
- // @Description: Position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller
- // @Range: 0.500 2.000
- // @User: Standard
- AP_SUBGROUPINFO(_p_pos_xy, "_POSXY_", 5, AC_PosControl, AC_P),
- // @Param: _VELXY_P
- // @DisplayName: Velocity (horizontal) P gain
- // @Description: Velocity (horizontal) P gain. Converts the difference between desired velocity to a target acceleration
- // @Range: 0.1 6.0
- // @Increment: 0.1
- // @User: Advanced
- // @Param: _VELXY_I
- // @DisplayName: Velocity (horizontal) I gain
- // @Description: Velocity (horizontal) I gain. Corrects long-term difference in desired velocity to a target acceleration
- // @Range: 0.02 1.00
- // @Increment: 0.01
- // @User: Advanced
- // @Param: _VELXY_D
- // @DisplayName: Velocity (horizontal) D gain
- // @Description: Velocity (horizontal) D gain. Corrects short-term changes in velocity
- // @Range: 0.00 1.00
- // @Increment: 0.001
- // @User: Advanced
- // @Param: _VELXY_IMAX
- // @DisplayName: Velocity (horizontal) integrator maximum
- // @Description: Velocity (horizontal) integrator maximum. Constrains the target acceleration that the I gain will output
- // @Range: 0 4500
- // @Increment: 10
- // @Units: cm/s/s
- // @User: Advanced
- // @Param: _VELXY_FILT
- // @DisplayName: Velocity (horizontal) input filter
- // @Description: Velocity (horizontal) input filter. This filter (in hz) is applied to the input for P and I terms
- // @Range: 0 100
- // @Units: Hz
- // @User: Advanced
- // @Param: _VELXY_D_FILT
- // @DisplayName: Velocity (horizontal) input filter
- // @Description: Velocity (horizontal) input filter. This filter (in hz) is applied to the input for P and I terms
- // @Range: 0 100
- // @Units: Hz
- // @User: Advanced
- AP_SUBGROUPINFO(_pid_vel_xy, "_VELXY_", 6, AC_PosControl, AC_PID_2D),
- // @Param: _ANGLE_MAX
- // @DisplayName: Position Control Angle Max
- // @Description: Maximum lean angle autopilot can request. Set to zero to use ANGLE_MAX parameter value
- // @Units: deg
- // @Range: 0 45
- // @Increment: 1
- // @User: Advanced
- AP_GROUPINFO("_ANGLE_MAX", 7, AC_PosControl, _lean_angle_max, 0.0f),
- AP_GROUPEND
- };
- // Default constructor.
- // Note that the Vector/Matrix constructors already implicitly zero
- // their values.
- //
- AC_PosControl::AC_PosControl(const AP_AHRS_View& ahrs, const AP_InertialNav& inav,
- const AP_Motors& motors, AC_AttitudeControl& attitude_control) :
- _ahrs(ahrs),
- _inav(inav),
- _motors(motors),
- _attitude_control(attitude_control),
- _p_pos_z(POSCONTROL_POS_Z_P),
- _p_vel_z(POSCONTROL_VEL_Z_P),
- _pid_accel_z(POSCONTROL_ACC_Z_P, POSCONTROL_ACC_Z_I, POSCONTROL_ACC_Z_D, 0.0f, POSCONTROL_ACC_Z_IMAX, 0.0f, POSCONTROL_ACC_Z_FILT_HZ, 0.0f, POSCONTROL_ACC_Z_DT),
- _p_pos_xy(POSCONTROL_POS_XY_P),
- _pid_vel_xy(POSCONTROL_VEL_XY_P, POSCONTROL_VEL_XY_I, POSCONTROL_VEL_XY_D, POSCONTROL_VEL_XY_IMAX, POSCONTROL_VEL_XY_FILT_HZ, POSCONTROL_VEL_XY_FILT_D_HZ, POSCONTROL_DT_50HZ),
- _dt(POSCONTROL_DT_400HZ),
- _speed_down_cms(POSCONTROL_SPEED_DOWN),
- _speed_up_cms(POSCONTROL_SPEED_UP),
- _speed_cms(POSCONTROL_SPEED),
- _accel_z_cms(POSCONTROL_ACCEL_Z),
- _accel_cms(POSCONTROL_ACCEL_XY),
- _leash(POSCONTROL_LEASH_LENGTH_MIN),
- _leash_down_z(POSCONTROL_LEASH_LENGTH_MIN),
- _leash_up_z(POSCONTROL_LEASH_LENGTH_MIN),
- _accel_target_filter(POSCONTROL_ACCEL_FILTER_HZ),
- alt_rate(10.0),
- _vel_target_filter(10.0),
- current_alt(10.0)
- {
- AP_Param::setup_object_defaults(this, var_info);
- // initialise flags
- _flags.recalc_leash_z = true;
- _flags.recalc_leash_xy = true;
- _flags.reset_desired_vel_to_pos = true;
- _flags.reset_accel_to_lean_xy = true;
- _flags.reset_rate_to_accel_z = true;
- _flags.freeze_ff_z = true;
- _flags.use_desvel_ff_z = true;
- _limit.pos_up = true;
- _limit.pos_down = true;
- _limit.vel_up = true;
- _limit.vel_down = true;
- _limit.accel_xy = true;
-
- }
- ///
- /// z-axis position controller
- ///
- /// set_dt - sets time delta in seconds for all controllers (i.e. 100hz = 0.01, 400hz = 0.0025)
- void AC_PosControl::set_dt(float delta_sec)
- {
- _dt = delta_sec;
- // update PID controller dt
- _pid_accel_z.set_dt(_dt);
- _pid_vel_xy.set_dt(_dt);
- // update rate z-axis velocity error and accel error filters
- _vel_error_filter.set_cutoff_frequency(POSCONTROL_VEL_ERROR_CUTOFF_FREQ);
- }
- /// set_max_speed_z - set the maximum climb and descent rates
- /// To-Do: call this in the main code as part of flight mode initialisation
- void AC_PosControl::set_max_speed_z(float speed_down, float speed_up)
- {
- // ensure speed_down is always negative
- speed_down = -fabsf(speed_down);
- //默认_speed_down_cms -150 ,,_speed_up_cms 250
- if ((fabsf(_speed_down_cms - speed_down) > 1.0f) || (fabsf(_speed_up_cms - speed_up) > 1.0f)) {
- _speed_down_cms = speed_down;
- _speed_up_cms = speed_up;
- _flags.recalc_leash_z = true;
- calc_leash_length_z();// 刹车长度
- }
- }
- /// set_max_accel_z - set the maximum vertical acceleration in cm/s/s
- void AC_PosControl::set_max_accel_z(float accel_cmss)
- {
- if (fabsf(_accel_z_cms - accel_cmss) > 1.0f) {
- _accel_z_cms = accel_cmss;
- _flags.recalc_leash_z = true;
- calc_leash_length_z();
- }
- }
- /// set_alt_target_with_slew - adjusts target towards a final altitude target
- /// should be called continuously (with dt set to be the expected time between calls)
- /// actual position target will be moved no faster than the speed_down and speed_up
- /// target will also be stopped if the motors hit their limits or leash length is exceeded
- void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt)
- {
- float alt_change = alt_cm - _pos_target.z;
- // do not use z-axis desired velocity feed forward
- _flags.use_desvel_ff_z = false;
- // adjust desired alt if motors have not hit their limits
- if ((alt_change < 0 && !_motors.limit.throttle_lower) || (alt_change > 0 && !_motors.limit.throttle_upper)) {
- if (!is_zero(dt)) {
- float climb_rate_cms = constrain_float(alt_change / dt, _speed_down_cms, _speed_up_cms);
- _pos_target.z += climb_rate_cms * dt;
- _vel_desired.z = climb_rate_cms; // recorded for reporting purposes
- }
- } else {
- // recorded for reporting purposes
- _vel_desired.z = 0.0f;
- }
- // do not let target get too far from current altitude
- float curr_alt = _inav.get_altitude();
- _pos_target.z = constrain_float(_pos_target.z, curr_alt - _leash_down_z, curr_alt + _leash_up_z);
- }
- /// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s
- /// should be called continuously (with dt set to be the expected time between calls)
- /// actual position target will be moved no faster than the speed_down and speed_up
- /// target will also be stopped if the motors hit their limits or leash length is exceeded
- void AC_PosControl::set_alt_target_from_climb_rate(float climb_rate_cms, float dt, bool force_descend)
- {
- // adjust desired alt if motors have not hit their limits
- // To-Do: add check of _limit.pos_down?
- if ((climb_rate_cms < 0 && (!_motors.limit.throttle_lower || force_descend)) || (climb_rate_cms > 0 && !_motors.limit.throttle_upper && !_limit.pos_up)) {
- _pos_target.z += climb_rate_cms * dt;
- }
- // do not use z-axis desired velocity feed forward
- // vel_desired set to desired climb rate for reporting and land-detector
- _flags.use_desvel_ff_z = false;
- _vel_desired.z = climb_rate_cms;
- }
- /// set_alt_target_from_climb_rate_ff - adjusts target up or down using a climb rate in cm/s using feed-forward
- /// should be called continuously (with dt set to be the expected time between calls)
- /// actual position target will be moved no faster than the speed_down and speed_up
- /// target will also be stopped if the motors hit their limits or leash length is exceeded
- /// set force_descend to true during landing to allow target to move low enough to slow the motors
- void AC_PosControl::set_alt_target_from_climb_rate_ff(float climb_rate_cms, float dt, bool force_descend)
- {
- // calculated increased maximum acceleration if over speed
- float accel_z_cms = _accel_z_cms;
- if (_vel_desired.z < _speed_down_cms && !is_zero(_speed_down_cms)) {
- accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_down_cms;
- }
- if (_vel_desired.z > _speed_up_cms && !is_zero(_speed_up_cms)) {
- accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_up_cms;
- }
- accel_z_cms = constrain_float(accel_z_cms, 0.0f, 750.0f);
- // jerk_z is calculated to reach full acceleration in 1000ms.
- float jerk_z = accel_z_cms * POSCONTROL_JERK_RATIO;
- float accel_z_max = MIN(accel_z_cms, safe_sqrt(2.0f * fabsf(_vel_desired.z - climb_rate_cms) * jerk_z));
- _accel_last_z_cms += jerk_z * dt;
- _accel_last_z_cms = MIN(accel_z_max, _accel_last_z_cms);
- float vel_change_limit = _accel_last_z_cms * dt;
- _vel_desired.z = constrain_float(climb_rate_cms, _vel_desired.z - vel_change_limit, _vel_desired.z + vel_change_limit);
- _flags.use_desvel_ff_z = true;
- // adjust desired alt if motors have not hit their limits
- // To-Do: add check of _limit.pos_down?
- if ((_vel_desired.z < 0 && (!_motors.limit.throttle_lower || force_descend)) || (_vel_desired.z > 0 && !_motors.limit.throttle_upper && !_limit.pos_up)) {
- _pos_target.z += _vel_desired.z * dt;
- }
- }
- /// add_takeoff_climb_rate - adjusts alt target up or down using a climb rate in cm/s
- /// should be called continuously (with dt set to be the expected time between calls)
- /// almost no checks are performed on the input
- void AC_PosControl::add_takeoff_climb_rate(float climb_rate_cms, float dt)
- {
- _pos_target.z += climb_rate_cms * dt;
- }
- /// shift altitude target (positive means move altitude up)
- void AC_PosControl::shift_alt_target(float z_cm)
- {
- _pos_target.z += z_cm;
- // freeze feedforward to avoid jump
- if (!is_zero(z_cm)) {
- freeze_ff_z();
- }
- }
- /// relax_alt_hold_controllers - set all desired and targets to measured
- void AC_PosControl::relax_alt_hold_controllers(float throttle_setting)
- {
- _pos_target.z = _inav.get_altitude();
- _vel_desired.z = 0.0f;
- _flags.use_desvel_ff_z = false;
- _vel_target.z = _inav.get_velocity_z();
- _vel_last.z = _inav.get_velocity_z();
- _accel_desired.z = 0.0f;
- _accel_last_z_cms = 0.0f;
- _flags.reset_rate_to_accel_z = true;
- _pid_accel_z.set_integrator((throttle_setting - _motors.get_throttle_hover()) * 1000.0f);
- _accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f;
- _pid_accel_z.reset_filter();
- }
- // get_alt_error - returns altitude error in cm
- float AC_PosControl::get_alt_error() const
- {
- return (_pos_target.z - _inav.get_altitude());
- }
- /// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home
- void AC_PosControl::set_target_to_stopping_point_z()
- {
- // check if z leash needs to be recalculated
- calc_leash_length_z();
- get_stopping_point_z(_pos_target);
- }
- /// get_stopping_point_z - calculates stopping point based on current position, velocity, vehicle acceleration
- void AC_PosControl::get_stopping_point_z(Vector3f& stopping_point) const
- {
- //const float curr_pos_z = _inav.get_altitude();
- const float curr_pos_z = sub.barometer.get_altitude()*100;//_inav.get_altitude();//12.19
- // float curr_vel_z = _inav.get_velocity_z();
- float curr_vel_z =alt_rate.get();
- float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt
- float linear_velocity; // the velocity we swap between linear and sqrt
- // if position controller is active add current velocity error to avoid sudden jump in acceleration
- if (is_active_z()) {
- curr_vel_z += _vel_error.z;
- if (_flags.use_desvel_ff_z) {
- curr_vel_z -= _vel_desired.z;
- }
- }
- // avoid divide by zero by using current position if kP is very low or acceleration is zero
- if (_p_pos_z.kP() <= 0.0f || _accel_z_cms <= 0.0f) {
- stopping_point.z = curr_pos_z;
- return;
- }
- // calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function
- linear_velocity = _accel_z_cms / _p_pos_z.kP();
- if (fabsf(curr_vel_z) < linear_velocity) {
- // if our current velocity is below the cross-over point we use a linear function
- stopping_point.z = curr_pos_z + curr_vel_z / _p_pos_z.kP();
- } else {
- linear_distance = _accel_z_cms / (2.0f * _p_pos_z.kP() * _p_pos_z.kP());
- if (curr_vel_z > 0) {
- stopping_point.z = curr_pos_z + (linear_distance + curr_vel_z * curr_vel_z / (2.0f * _accel_z_cms));
- } else {
- stopping_point.z = curr_pos_z - (linear_distance + curr_vel_z * curr_vel_z / (2.0f * _accel_z_cms));
- }
- }
- stopping_point.z = constrain_float(stopping_point.z, curr_pos_z - POSCONTROL_STOPPING_DIST_DOWN_MAX, curr_pos_z + POSCONTROL_STOPPING_DIST_UP_MAX);
- }
- /// init_takeoff - initialises target altitude if we are taking off
- void AC_PosControl::init_takeoff()
- {
- const Vector3f& curr_pos = _inav.get_position();
- _pos_target.z = curr_pos.z;
- // freeze feedforward to avoid jump
- freeze_ff_z();
- // shift difference between last motor out and hover throttle into accelerometer I
- _pid_accel_z.set_integrator((_attitude_control.get_throttle_in() - _motors.get_throttle_hover()) * 1000.0f);
- // initialise ekf reset handler
- init_ekf_z_reset();
- }
- // is_active_z - returns true if the z-axis position controller has been run very recently
- bool AC_PosControl::is_active_z() const
- {
- return ((AP_HAL::micros64() - _last_update_z_us) <= POSCONTROL_ACTIVE_TIMEOUT_US);
- }
- /// update_z_controller - fly to altitude in cm above home
- void AC_PosControl::update_z_controller()
- {
- // check time since last cast
- const uint64_t now_us = AP_HAL::micros64();
- if (now_us - _last_update_z_us > POSCONTROL_ACTIVE_TIMEOUT_US) {
- _flags.reset_rate_to_accel_z = true;
- _pid_accel_z.set_integrator((_attitude_control.get_throttle_in() - _motors.get_throttle_hover()) * 1000.0f);
- _accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f;
- _pid_accel_z.reset_filter();
- }
- _last_update_z_us = now_us;
- // check for ekf altitude reset
- //check_for_ekf_z_reset();
- // check if leash lengths need to be recalculated
- calc_leash_length_z();
- // call z-axis position controller
- run_z_controller();
- }
- float AC_PosControl::update_z_controller_f()
- {
- // check time since last cast
- const uint64_t now_us = AP_HAL::micros64();
- if (now_us - _last_update_z_us > POSCONTROL_ACTIVE_TIMEOUT_US) {
- _flags.reset_rate_to_accel_z = true;
- _pid_accel_z.set_integrator((_attitude_control.get_throttle_in() - _motors.get_throttle_hover()) * 1000.0f);
- _accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f;
- _pid_accel_z.reset_filter();
- }
- _last_update_z_us = now_us;
- // check for ekf altitude reset
- // check_for_ekf_z_reset();
- // check if leash lengths need to be recalculated
- calc_leash_length_z();
- // call z-axis position controller
- return run_z_controller_f();
- }
- /// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration
- /// called by update_z_controller if z-axis speed or accelerations are changed
- void AC_PosControl::calc_leash_length_z()
- {
- if (_flags.recalc_leash_z) {
- _leash_up_z = calc_leash_length(_speed_up_cms, _accel_z_cms, _p_pos_z.kP());
- _leash_down_z = calc_leash_length(-_speed_down_cms, _accel_z_cms, _p_pos_z.kP());
- _flags.recalc_leash_z = false;
- }
- }
- // run position control for Z axis
- // target altitude should be set with one of these functions: set_alt_target, set_target_to_stopping_point_z, init_takeoff
- // calculates desired rate in earth-frame z axis and passes to rate controller
- // vel_up_max, vel_down_max should have already been set before calling this method
- void AC_PosControl::run_z_controller()
- {
- //float curr_alt = _inav.get_altitude();//12.19
- float curr_alt = sub.barometer.get_altitude()*100;//_inav.get_altitude();//12.19
-
-
- // clear position limit flags
- _limit.pos_up = false;
- _limit.pos_down = false;
- // calculate altitude error
- _pos_error.z = _pos_target.z - curr_alt;
- // do not let target altitude get too far from current altitude
- if (_pos_error.z > _leash_up_z) {
- _pos_target.z = curr_alt + _leash_up_z;
- _pos_error.z = _leash_up_z;
- _limit.pos_up = true;
- }
- if (_pos_error.z < -_leash_down_z) {
- _pos_target.z = curr_alt - _leash_down_z;
- _pos_error.z = -_leash_down_z;
- _limit.pos_down = true;
- }
- // calculate _vel_target.z using from _pos_error.z using sqrt controller
- _vel_target.z = AC_AttitudeControl::sqrt_controller(_pos_error.z, _p_pos_z.kP(), _accel_z_cms, _dt);
- // check speed limits
- // To-Do: check these speed limits here or in the pos->rate controller
- _limit.vel_up = false;
- _limit.vel_down = false;
- if (_vel_target.z < _speed_down_cms) {
- _vel_target.z = _speed_down_cms;
- _limit.vel_down = true;
- }
- if (_vel_target.z > _speed_up_cms) {
- _vel_target.z = _speed_up_cms;
- _limit.vel_up = true;
- }
- // add feed forward component
- if (_flags.use_desvel_ff_z) {
- _vel_target.z += _vel_desired.z;
- }
-
- // the following section calculates acceleration required to achieve the velocity target
- //const Vector3f& curr_vel = _inav.get_velocity();//12.19
-
- Vector3f curr_vel;//12.19
-
- curr_vel.z=alt_rate.get();
- // TODO: remove velocity derivative calculation
- // reset last velocity target to current target
- if (_flags.reset_rate_to_accel_z) {//改变高度时候复位
- _vel_last.z = _vel_target.z;
- }
- // feed forward desired acceleration calculation
- if (_dt > 0.0f) {
- if (!_flags.freeze_ff_z) {
- _accel_desired.z = (_vel_target.z - _vel_last.z) / _dt;
- } else {
- // stop the feed forward being calculated during a known discontinuity
- _flags.freeze_ff_z = false;
- }
- } else {
- _accel_desired.z = 0.0f;
- }
- // store this iteration's velocities for the next iteration
- _vel_last.z = _vel_target.z;
- // reset velocity error and filter if this controller has just been engaged
- if (_flags.reset_rate_to_accel_z) {
- // Reset Filter
- _vel_error.z = 0;
- _vel_error_filter.reset(0);
- _accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f;//02.28
- _flags.reset_rate_to_accel_z = false;
- } else {
- // calculate rate error and filter with cut off frequency of 2 Hz
- _vel_error.z = _vel_error_filter.apply(_vel_target.z - curr_vel.z, _dt);
- _accel_target.z = _p_vel_z.get_p(_vel_error.z);//02.28
- }
-
- _accel_target.z += _accel_desired.z;
- // the following section calculates a desired throttle needed to achieve the acceleration target
- float z_accel_meas; // actual acceleration
- // Calculate Earth Frame Z acceleration
- z_accel_meas = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f;
- // ensure imax is always large enough to overpower hover throttle
- if (_motors.get_throttle_hover() * 1000.0f > _pid_accel_z.imax()) {
- _pid_accel_z.imax(_motors.get_throttle_hover() * 1000.0f);
- }
- // float thr_out = _pid_accel_z.update_all(_accel_target.z, z_accel_meas, (_motors.limit.throttle_lower || _motors.limit.throttle_upper)) * 0.001f +_motors.get_throttle_hover();
- float thr_out = _pid_accel_z.update_all(_accel_target.z, z_accel_meas, (_motors.limit.throttle_lower || _motors.limit.throttle_upper)) * 0.001f +0.5;
- // send throttle to attitude controller with angle boost
- _attitude_control.set_throttle_out(thr_out, true, POSCONTROL_THROTTLE_CUTOFF_FREQ);
- }
- void AC_PosControl::calculate_rate(float dt){
-
- current_alt.apply(sub.barometer.get_altitude()*100,dt);//_inav.get_altitude();//12.19
- alt_rate.apply((current_alt.get()-last_alt)/dt,dt);//12.19 cm
- last_alt = current_alt.get();//12.19
- sub.velocity_z_filer = (0.95f*sub.velocity_z_filer) + (0.05f*alt_rate.get());//滤波
- }
- void AC_PosControl::calculate_target_rate(float dt){
- float curr_alt = sub.barometer.get_altitude()*100;//_inav.get_altitude();//12.19
- _pos_error.z = _pos_target.z - curr_alt;
-
- _limit.pos_up = false;
- _limit.pos_down = false;
- // do not let target altitude get too far from current altitude
- if (_pos_error.z > _leash_up_z) {
- _pos_target.z = curr_alt + _leash_up_z;
- _pos_error.z = _leash_up_z;
- _limit.pos_up = true;
- }
- if (_pos_error.z < -_leash_down_z) {
- _pos_target.z = curr_alt - _leash_down_z;
- _pos_error.z = -_leash_down_z;
- _limit.pos_down = true;
- }
-
- _vel_target.z = AC_AttitudeControl::sqrt_controller(_pos_error.z, _p_pos_z.kP(), _accel_z_cms, dt);
- _limit.vel_up = false;
- _limit.vel_down = false;
- if (_vel_target.z < _speed_down_cms) {
- _vel_target.z = _speed_down_cms;
- _limit.vel_down = true;
- }
- if (_vel_target.z > _speed_up_cms) {
- _vel_target.z = _speed_up_cms;
- _limit.vel_up = true;
- }
- }
- float AC_PosControl::run_z_controller_f()
- {
- //float curr_alt = _inav.get_altitude();//12.19
-
- float curr_alt = sub.barometer.get_altitude()*100;//_inav.get_altitude();//12.19
- // clear position limit flags
- _limit.pos_up = false;
- _limit.pos_down = false;
- // calculate altitude error
- _pos_error.z = _pos_target.z - curr_alt;
- // do not let target altitude get too far from current altitude
- if (_pos_error.z > _leash_up_z) {
- _pos_target.z = curr_alt + _leash_up_z;
- _pos_error.z = _leash_up_z;
- _limit.pos_up = true;
- }
- if (_pos_error.z < -_leash_down_z) {
- _pos_target.z = curr_alt - _leash_down_z;
- _pos_error.z = -_leash_down_z;
- _limit.pos_down = true;
- }
- float scaler = 0.0;
-
- scaler = 6.0;//加速度的KI
- float kp = 0.0;
- if (fabsf(_pos_error.z)>scaler)
- {
- kp = 2.0;//位置的KP
- _p_pos_z.kP(kp);
-
- kp = 10.0;//速度的Kp
- _p_vel_z.kP(kp);
-
- kp = 1.3;//加速度的KP
- _pid_accel_z.kP(kp);
-
- kp = 0.8;//加速度的KI
- _pid_accel_z.kI(kp);
-
- }else{
- kp = 2.0;//位置的KP
- _p_pos_z.kP(kp);
-
- kp = 7.0;//速度的KP
- _p_vel_z.kP(kp);
- kp = 1.0;//加速度的KP
- _pid_accel_z.kP(kp);
-
- kp = 0.8;//加速度的KI
- _pid_accel_z.kI(kp);
- }
- /*scaler = (float)SRV_Channels::srv_channel(15)->get_trim()/1000;//加速度的KI
- float kp = 0.0;
- if (fabsf(_pos_error.z)>scaler)
- {
- kp = (float)SRV_Channels::srv_channel(14)->get_output_max()/1000;//位置的KP
- _p_pos_z.kP(kp);
-
- kp = (float)SRV_Channels::srv_channel(14)->get_output_min()/1000;//速度的Kp
- _p_vel_z.kP(kp);
-
- kp = (float)SRV_Channels::srv_channel(13)->get_output_min()/1000;//加速度的KP
- _pid_accel_z.kP(kp);
-
- kp = (float)SRV_Channels::srv_channel(13)->get_trim()/10000;//加速度的KI
- _pid_accel_z.kI(kp);
-
- }else{
- kp = (float)SRV_Channels::srv_channel(14)->get_trim()/1000;//位置的KP
- _p_pos_z.kP(kp);
-
- kp = (float)SRV_Channels::srv_channel(13)->get_output_max()/1000;//速度的KP
- _p_vel_z.kP(kp);
- kp = (float)SRV_Channels::srv_channel(15)->get_output_max()/1000;//加速度的KP
- _pid_accel_z.kP(kp);
-
- kp = (float)SRV_Channels::srv_channel(15)->get_output_min()/1000;//加速度的KI
- _pid_accel_z.kI(kp);
- }*/
- static uint16_t count2 = 0;
- count2++;
- if (count2>300)
- {
- count2 = 0;
- //gcs().send_text(MAV_SEVERITY_INFO, "PID %f %f%f %f\n",(float)_p_pos_z.kP(), (float)_p_vel_z.kP(),(float)_pid_accel_z.kP(),(float)_pid_accel_z.kI());
-
- }
- // calculate _vel_target.z using from _pos_error.z using sqrt controller
-
- _vel_target_filter.apply(AC_AttitudeControl::sqrt_controller(_pos_error.z, _p_pos_z.kP(), _accel_z_cms, _dt),_dt);
- _vel_target.z = _vel_target_filter.get();
- // check speed limits
- // To-Do: check these speed limits here or in the pos->rate controller
- _limit.vel_up = false;
- _limit.vel_down = false;
- if (_vel_target.z < _speed_down_cms) {
- _vel_target.z = _speed_down_cms;
- _limit.vel_down = true;
- }
- if (_vel_target.z > _speed_up_cms) {
- _vel_target.z = _speed_up_cms;
- _limit.vel_up = true;
- }
- // add feed forward component
- if (_flags.use_desvel_ff_z) {
-
- _vel_target.z += _vel_desired.z;
-
- }
-
- // the following section calculates acceleration required to achieve the velocity target
- //const Vector3f& curr_vel = _inav.get_velocity();//12.19
-
- Vector3f curr_vel;//12.19
-
- curr_vel.z=sub.velocity_z_filer;//alt_rate.get();
- // TODO: remove velocity derivative calculation
- // reset last velocity target to current target
- if (_flags.reset_rate_to_accel_z) {//改变高度时候复位
- _vel_last.z = _vel_target.z;
- }
- // feed forward desired acceleration calculation
- if (_dt > 0.0f) {
- if (!_flags.freeze_ff_z) {
- _accel_desired.z = (_vel_target.z - _vel_last.z) / _dt;
- } else {
- // stop the feed forward being calculated during a known discontinuity
- _flags.freeze_ff_z = false;
- }
- } else {
- _accel_desired.z = 0.0f;
- }
- // store this iteration's velocities for the next iteration
- _vel_last.z = _vel_target.z;
-
- // reset velocity error and filter if this controller has just been engaged
- if (_flags.reset_rate_to_accel_z) {
- // Reset Filter
- _vel_error.z = 0;
- _vel_error_filter.reset(0);
- //_accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f;//02.28
-
- _flags.reset_rate_to_accel_z = false;
- } else {
- // calculate rate error and filter with cut off frequency of 2 Hz
- _vel_error.z = _vel_error_filter.apply(_vel_target.z - curr_vel.z, _dt);
- // _accel_target.z = _p_vel_z.get_p(_vel_error.z);//02.28
-
- }
- _accel_target.z = _p_vel_z.get_p(_vel_error.z);//02.28
- _accel_target.z += _accel_desired.z;
- // the following section calculates a desired throttle needed to achieve the acceleration target
- float z_accel_meas; // actual acceleration
- // Calculate Earth Frame Z acceleration
- z_accel_meas = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f;
- // ensure imax is always large enough to overpower hover throttle
- if (_motors.get_throttle_hover() * 1000.0f > _pid_accel_z.imax()) {
- _pid_accel_z.imax(_motors.get_throttle_hover() * 1000.0f);
- }
- // float thr_out = _pid_accel_z.update_all(_accel_target.z, z_accel_meas, (_motors.limit.throttle_lower || _motors.limit.throttle_upper)) * 0.001f +_motors.get_throttle_hover();
- float thr_out = _pid_accel_z.update_all(_accel_target.z, z_accel_meas, (_motors.limit.throttle_lower || _motors.limit.throttle_upper)) * 0.001f;
-
- //如果加一个当前速度前馈的话最多可以用0.002
- // send throttle to attitude controller with angle boost
- // _attitude_control.set_throttle_out(thr_out, true, POSCONTROL_THROTTLE_CUTOFF_FREQ);
- return thr_out;
- }
- ///
- /// lateral position controller
- ///
- /// set_max_accel_xy - set the maximum horizontal acceleration in cm/s/s
- void AC_PosControl::set_max_accel_xy(float accel_cmss)
- {
- if (fabsf(_accel_cms - accel_cmss) > 1.0f) {
- _accel_cms = accel_cmss;
- _flags.recalc_leash_xy = true;
- calc_leash_length_xy();
- }
- }
- /// set_max_speed_xy - set the maximum horizontal speed maximum in cm/s
- void AC_PosControl::set_max_speed_xy(float speed_cms)
- {
- if (fabsf(_speed_cms - speed_cms) > 1.0f) {
- _speed_cms = speed_cms;
- _flags.recalc_leash_xy = true;
- calc_leash_length_xy();
- }
- }
- /// set_pos_target in cm from home
- void AC_PosControl::set_pos_target(const Vector3f& position)
- {
- _pos_target = position;
- _flags.use_desvel_ff_z = false;
- _vel_desired.z = 0.0f;
- // initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run
- // To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle
- //_roll_target = constrain_int32(_ahrs.roll_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max());
- //_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max());
- }
- /// set_xy_target in cm from home
- void AC_PosControl::set_xy_target(float x, float y)
- {
- _pos_target.x = x;
- _pos_target.y = y;
- }
- /// shift position target target in x, y axis
- void AC_PosControl::shift_pos_xy_target(float x_cm, float y_cm)
- {
- // move pos controller target
- _pos_target.x += x_cm;
- _pos_target.y += y_cm;
- }
- /// set_target_to_stopping_point_xy - sets horizontal target to reasonable stopping position in cm from home
- void AC_PosControl::set_target_to_stopping_point_xy()
- {
- // check if xy leash needs to be recalculated
- calc_leash_length_xy();
- get_stopping_point_xy(_pos_target);
- }
- /// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration
- /// distance_max allows limiting distance to stopping point
- /// results placed in stopping_position vector
- /// set_max_accel_xy() should be called before this method to set vehicle acceleration
- /// set_leash_length() should have been called before this method
- void AC_PosControl::get_stopping_point_xy(Vector3f &stopping_point) const
- {
- const Vector3f curr_pos = _inav.get_position();
- Vector3f curr_vel = _inav.get_velocity();
- float linear_distance; // the distance at which we swap from a linear to sqrt response
- float linear_velocity; // the velocity above which we swap from a linear to sqrt response
- float stopping_dist; // the distance within the vehicle can stop
- float kP = _p_pos_xy.kP();
- // add velocity error to current velocity
- if (is_active_xy()) {
- curr_vel.x += _vel_error.x;
- curr_vel.y += _vel_error.y;
- }
- // calculate current velocity
- float vel_total = norm(curr_vel.x, curr_vel.y);
- // avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
- if (kP <= 0.0f || _accel_cms <= 0.0f || is_zero(vel_total)) {
- stopping_point.x = curr_pos.x;
- stopping_point.y = curr_pos.y;
- return;
- }
- // calculate point at which velocity switches from linear to sqrt
- linear_velocity = _accel_cms / kP;
- // calculate distance within which we can stop
- if (vel_total < linear_velocity) {
- stopping_dist = vel_total / kP;
- } else {
- linear_distance = _accel_cms / (2.0f * kP * kP);
- stopping_dist = linear_distance + (vel_total * vel_total) / (2.0f * _accel_cms);
- }
- // constrain stopping distance
- stopping_dist = constrain_float(stopping_dist, 0, _leash);
- // convert the stopping distance into a stopping point using velocity vector
- stopping_point.x = curr_pos.x + (stopping_dist * curr_vel.x / vel_total);
- stopping_point.y = curr_pos.y + (stopping_dist * curr_vel.y / vel_total);
- }
- /// get_distance_to_target - get horizontal distance to target position in cm
- float AC_PosControl::get_distance_to_target() const
- {
- return norm(_pos_error.x, _pos_error.y);
- }
- /// get_bearing_to_target - get bearing to target position in centi-degrees
- int32_t AC_PosControl::get_bearing_to_target() const
- {
- return get_bearing_cd(_inav.get_position(), _pos_target);
- }
- // is_active_xy - returns true if the xy position controller has been run very recently
- bool AC_PosControl::is_active_xy() const
- {
- return ((AP_HAL::micros64() - _last_update_xy_us) <= POSCONTROL_ACTIVE_TIMEOUT_US);
- }
- /// get_lean_angle_max_cd - returns the maximum lean angle the autopilot may request
- float AC_PosControl::get_lean_angle_max_cd() const
- {
- if (is_zero(_lean_angle_max)) {
- return _attitude_control.lean_angle_max();
- }
- return _lean_angle_max * 100.0f;
- }
- /// init_xy_controller - initialise the xy controller
- /// this should be called after setting the position target and the desired velocity and acceleration
- /// sets target roll angle, pitch angle and I terms based on vehicle current lean angles
- /// should be called once whenever significant changes to the position target are made
- /// this does not update the xy target
- void AC_PosControl::init_xy_controller()
- {
- // set roll, pitch lean angle targets to current attitude
- // todo: this should probably be based on the desired attitude not the current attitude
- _roll_target = _ahrs.roll_sensor;
- _pitch_target = _ahrs.pitch_sensor;
- // initialise I terms from lean angles
- _pid_vel_xy.reset_filter();
- lean_angles_to_accel(_accel_target.x, _accel_target.y);
- _pid_vel_xy.set_integrator(_accel_target - _accel_desired);
- // flag reset required in rate to accel step
- _flags.reset_desired_vel_to_pos = true;
- _flags.reset_accel_to_lean_xy = true;
- // initialise ekf xy reset handler
- init_ekf_xy_reset();
- }
- /// update_xy_controller - run the horizontal position controller - should be called at 100hz or higher
- void AC_PosControl::update_xy_controller()
- {
- // compute dt
- const uint64_t now_us = AP_HAL::micros64();
- float dt = (now_us - _last_update_xy_us) * 1.0e-6f;
- // sanity check dt
- if (dt >= POSCONTROL_ACTIVE_TIMEOUT_US * 1.0e-6f) {
- dt = 0.0f;
- }
- // check for ekf xy position reset
- check_for_ekf_xy_reset();
- // check if xy leash needs to be recalculated
- calc_leash_length_xy();
- // translate any adjustments from pilot to loiter target
- desired_vel_to_pos(dt);
- // run horizontal position controller
- run_xy_controller(dt);
- // update xy update time
- _last_update_xy_us = now_us;
- }
- float AC_PosControl::time_since_last_xy_update() const
- {
- const uint64_t now_us = AP_HAL::micros64();
- return (now_us - _last_update_xy_us) * 1.0e-6f;
- }
- // write log to dataflash
- void AC_PosControl::write_log()
- {
- const Vector3f &pos_target = get_pos_target();
- const Vector3f &vel_target = get_vel_target();
- const Vector3f &accel_target = get_accel_target();
- const Vector3f &position = _inav.get_position();
- const Vector3f &velocity = _inav.get_velocity();
- float accel_x, accel_y;
- lean_angles_to_accel(accel_x, accel_y);
- AP::logger().Write("PSC",
- "TimeUS,TPX,TPY,PX,PY,TVX,TVY,VX,VY,TAX,TAY,AX,AY",
- "smmmmnnnnoooo",
- "F000000000000",
- "Qffffffffffff",
- AP_HAL::micros64(),
- double(pos_target.x * 0.01f),
- double(pos_target.y * 0.01f),
- double(position.x * 0.01f),
- double(position.y * 0.01f),
- double(vel_target.x * 0.01f),
- double(vel_target.y * 0.01f),
- double(velocity.x * 0.01f),
- double(velocity.y * 0.01f),
- double(accel_target.x * 0.01f),
- double(accel_target.y * 0.01f),
- double(accel_x * 0.01f),
- double(accel_y * 0.01f));
- }
- /// init_vel_controller_xyz - initialise the velocity controller - should be called once before the caller attempts to use the controller
- void AC_PosControl::init_vel_controller_xyz()
- {
- // set roll, pitch lean angle targets to current attitude
- _roll_target = _ahrs.roll_sensor;
- _pitch_target = _ahrs.pitch_sensor;
- _pid_vel_xy.reset_filter();
- lean_angles_to_accel(_accel_target.x, _accel_target.y);
- _pid_vel_xy.set_integrator(_accel_target);
- // flag reset required in rate to accel step
- _flags.reset_desired_vel_to_pos = true;
- _flags.reset_accel_to_lean_xy = true;
- // set target position
- const Vector3f& curr_pos = _inav.get_position();
- set_xy_target(curr_pos.x, curr_pos.y);
- set_alt_target(curr_pos.z);
- // move current vehicle velocity into feed forward velocity
- const Vector3f& curr_vel = _inav.get_velocity();
- set_desired_velocity(curr_vel);
- // set vehicle acceleration to zero
- set_desired_accel_xy(0.0f, 0.0f);
- // initialise ekf reset handlers
- init_ekf_xy_reset();
- init_ekf_z_reset();
- }
- /// update_velocity_controller_xy - run the velocity controller - should be called at 100hz or higher
- /// velocity targets should we set using set_desired_velocity_xy() method
- /// callers should use get_roll() and get_pitch() methods and sent to the attitude controller
- /// throttle targets will be sent directly to the motors
- void AC_PosControl::update_vel_controller_xy()
- {
- // capture time since last iteration
- const uint64_t now_us = AP_HAL::micros64();
- float dt = (now_us - _last_update_xy_us) * 1.0e-6f;
- // sanity check dt
- if (dt >= 0.2f) {
- dt = 0.0f;
- }
- // check for ekf xy position reset
- check_for_ekf_xy_reset();
- // check if xy leash needs to be recalculated
- calc_leash_length_xy();
- // apply desired velocity request to position target
- // TODO: this will need to be removed and added to the calling function.
- desired_vel_to_pos(dt);
- // run position controller
- run_xy_controller(dt);
- // update xy update time
- _last_update_xy_us = now_us;
- }
- /// update_velocity_controller_xyz - run the velocity controller - should be called at 100hz or higher
- /// velocity targets should we set using set_desired_velocity_xyz() method
- /// callers should use get_roll() and get_pitch() methods and sent to the attitude controller
- /// throttle targets will be sent directly to the motors
- void AC_PosControl::update_vel_controller_xyz()
- {
- update_vel_controller_xy();
- // update altitude target
- set_alt_target_from_climb_rate_ff(_vel_desired.z, _dt, false);
- // run z-axis position controller
- update_z_controller();
- }
- float AC_PosControl::get_horizontal_error() const
- {
- return norm(_pos_error.x, _pos_error.y);
- }
- ///
- /// private methods
- ///
- /// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration
- /// should be called whenever the speed, acceleration or position kP is modified
- void AC_PosControl::calc_leash_length_xy()
- {
- // todo: remove _flags.recalc_leash_xy or don't call this function after each variable change.
- if (_flags.recalc_leash_xy) {
- _leash = calc_leash_length(_speed_cms, _accel_cms, _p_pos_xy.kP());
- _flags.recalc_leash_xy = false;
- }
- }
- /// move velocity target using desired acceleration
- void AC_PosControl::desired_accel_to_vel(float nav_dt)
- {
- // range check nav_dt
- if (nav_dt < 0) {
- return;
- }
- // update target velocity
- if (_flags.reset_desired_vel_to_pos) {
- _flags.reset_desired_vel_to_pos = false;
- } else {
- _vel_desired.x += _accel_desired.x * nav_dt;
- _vel_desired.y += _accel_desired.y * nav_dt;
- }
- }
- /// desired_vel_to_pos - move position target using desired velocities
- void AC_PosControl::desired_vel_to_pos(float nav_dt)
- {
- // range check nav_dt
- if (nav_dt < 0) {
- return;
- }
- // update target position
- if (_flags.reset_desired_vel_to_pos) {
- _flags.reset_desired_vel_to_pos = false;
- } else {
- _pos_target.x += _vel_desired.x * nav_dt;
- _pos_target.y += _vel_desired.y * nav_dt;
- }
- }
- /// run horizontal position controller correcting position and velocity
- /// converts position (_pos_target) to target velocity (_vel_target)
- /// desired velocity (_vel_desired) is combined into final target velocity
- /// converts desired velocities in lat/lon directions to accelerations in lat/lon frame
- /// converts desired accelerations provided in lat/lon frame to roll/pitch angles
- void AC_PosControl::run_xy_controller(float dt)
- {
- float ekfGndSpdLimit, ekfNavVelGainScaler;
- AP::ahrs_navekf().getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
- Vector3f curr_pos = _inav.get_position();
- float kP = ekfNavVelGainScaler * _p_pos_xy.kP(); // scale gains to compensate for noisy optical flow measurement in the EKF
- // avoid divide by zero
- if (kP <= 0.0f) {
- _vel_target.x = 0.0f;
- _vel_target.y = 0.0f;
- } else {
- // calculate distance error
- _pos_error.x = _pos_target.x - curr_pos.x;
- _pos_error.y = _pos_target.y - curr_pos.y;
- // Constrain _pos_error and target position
- // Constrain the maximum length of _vel_target to the maximum position correction velocity
- // TODO: replace the leash length with a user definable maximum position correction
- if (limit_vector_length(_pos_error.x, _pos_error.y, _leash)) {
- _pos_target.x = curr_pos.x + _pos_error.x;
- _pos_target.y = curr_pos.y + _pos_error.y;
- }
- _vel_target = sqrt_controller(_pos_error, kP, _accel_cms);
- }
- // add velocity feed-forward
- _vel_target.x += _vel_desired.x;
- _vel_target.y += _vel_desired.y;
- // the following section converts desired velocities in lat/lon directions to accelerations in lat/lon frame
- Vector2f accel_target, vel_xy_p, vel_xy_i, vel_xy_d;
- // check if vehicle velocity is being overridden
- if (_flags.vehicle_horiz_vel_override) {
- _flags.vehicle_horiz_vel_override = false;
- } else {
- _vehicle_horiz_vel.x = _inav.get_velocity().x;
- _vehicle_horiz_vel.y = _inav.get_velocity().y;
- }
- // calculate velocity error
- _vel_error.x = _vel_target.x - _vehicle_horiz_vel.x;
- _vel_error.y = _vel_target.y - _vehicle_horiz_vel.y;
- // TODO: constrain velocity error and velocity target
- // call pi controller
- _pid_vel_xy.set_input(_vel_error);
- // get p
- vel_xy_p = _pid_vel_xy.get_p();
- // update i term if we have not hit the accel or throttle limits OR the i term will reduce
- // TODO: move limit handling into the PI and PID controller
- if (!_limit.accel_xy && !_motors.limit.throttle_upper) {
- vel_xy_i = _pid_vel_xy.get_i();
- } else {
- vel_xy_i = _pid_vel_xy.get_i_shrink();
- }
- // get d
- vel_xy_d = _pid_vel_xy.get_d();
- // acceleration to correct for velocity error and scale PID output to compensate for optical flow measurement induced EKF noise
- accel_target.x = (vel_xy_p.x + vel_xy_i.x + vel_xy_d.x) * ekfNavVelGainScaler;
- accel_target.y = (vel_xy_p.y + vel_xy_i.y + vel_xy_d.y) * ekfNavVelGainScaler;
- // reset accel to current desired acceleration
- if (_flags.reset_accel_to_lean_xy) {
- _accel_target_filter.reset(Vector2f(accel_target.x, accel_target.y));
- _flags.reset_accel_to_lean_xy = false;
- }
- // filter correction acceleration
- _accel_target_filter.set_cutoff_frequency(MIN(_accel_xy_filt_hz, 5.0f * ekfNavVelGainScaler));
- _accel_target_filter.apply(accel_target, dt);
- // pass the correction acceleration to the target acceleration output
- _accel_target.x = _accel_target_filter.get().x;
- _accel_target.y = _accel_target_filter.get().y;
- // Add feed forward into the target acceleration output
- _accel_target.x += _accel_desired.x;
- _accel_target.y += _accel_desired.y;
- // the following section converts desired accelerations provided in lat/lon frame to roll/pitch angles
- // limit acceleration using maximum lean angles
- float angle_max = MIN(_attitude_control.get_althold_lean_angle_max(), get_lean_angle_max_cd());
- float accel_max = MIN(GRAVITY_MSS * 100.0f * tanf(ToRad(angle_max * 0.01f)), POSCONTROL_ACCEL_XY_MAX);
- _limit.accel_xy = limit_vector_length(_accel_target.x, _accel_target.y, accel_max);
- // update angle targets that will be passed to stabilize controller
- accel_to_lean_angles(_accel_target.x, _accel_target.y, _roll_target, _pitch_target);
- }
- // get_lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s
- void AC_PosControl::accel_to_lean_angles(float accel_x_cmss, float accel_y_cmss, float& roll_target, float& pitch_target) const
- {
- float accel_right, accel_forward;
- // rotate accelerations into body forward-right frame
- // todo: this should probably be based on the desired heading not the current heading
- accel_forward = accel_x_cmss * _ahrs.cos_yaw() + accel_y_cmss * _ahrs.sin_yaw();
- accel_right = -accel_x_cmss * _ahrs.sin_yaw() + accel_y_cmss * _ahrs.cos_yaw();
- // update angle targets that will be passed to stabilize controller
- pitch_target = atanf(-accel_forward / (GRAVITY_MSS * 100.0f)) * (18000.0f / M_PI);
- float cos_pitch_target = cosf(pitch_target * M_PI / 18000.0f);
- roll_target = atanf(accel_right * cos_pitch_target / (GRAVITY_MSS * 100.0f)) * (18000.0f / M_PI);
- }
- // get_lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s
- void AC_PosControl::lean_angles_to_accel(float& accel_x_cmss, float& accel_y_cmss) const
- {
- // rotate our roll, pitch angles into lat/lon frame
- // todo: this should probably be based on the desired attitude not the current attitude
- accel_x_cmss = (GRAVITY_MSS * 100) * (-_ahrs.cos_yaw() * _ahrs.sin_pitch() * _ahrs.cos_roll() - _ahrs.sin_yaw() * _ahrs.sin_roll()) / MAX(_ahrs.cos_roll() * _ahrs.cos_pitch(), 0.5f);
- accel_y_cmss = (GRAVITY_MSS * 100) * (-_ahrs.sin_yaw() * _ahrs.sin_pitch() * _ahrs.cos_roll() + _ahrs.cos_yaw() * _ahrs.sin_roll()) / MAX(_ahrs.cos_roll() * _ahrs.cos_pitch(), 0.5f);
- }
- /// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain
- float AC_PosControl::calc_leash_length(float speed_cms, float accel_cms, float kP) const
- {
- float leash_length;
- // sanity check acceleration and avoid divide by zero
- if (accel_cms <= 0.0f) {
- accel_cms = POSCONTROL_ACCELERATION_MIN;
- }
- // avoid divide by zero
- if (kP <= 0.0f) {
- return POSCONTROL_LEASH_LENGTH_MIN;
- }
- // calculate leash length 1/kP 为时间间隔dt
- if (speed_cms <= accel_cms / kP) {
- // linear leash length based on speed close in
- leash_length = speed_cms / kP; //时间间隔很小的时候 V*dt
- } else {
- // leash length grows at sqrt of speed further out //时间间隔比较大的时候 1/2*a*dt^2+ v^2/2/a 这是根据开方器来的 看不懂
- leash_length = (accel_cms / (2.0f * kP * kP)) + (speed_cms * speed_cms / (2.0f * accel_cms));
- }
- // ensure leash is at least 1m long
- if (leash_length < POSCONTROL_LEASH_LENGTH_MIN) {
- leash_length = POSCONTROL_LEASH_LENGTH_MIN;
- }
- return leash_length;
- }
- /// initialise ekf xy position reset check
- void AC_PosControl::init_ekf_xy_reset()
- {
- Vector2f pos_shift;
- _ekf_xy_reset_ms = _ahrs.getLastPosNorthEastReset(pos_shift);
- }
- /// check for ekf position reset and adjust loiter or brake target position
- void AC_PosControl::check_for_ekf_xy_reset()
- {
- // check for position shift
- Vector2f pos_shift;
- uint32_t reset_ms = _ahrs.getLastPosNorthEastReset(pos_shift);
- if (reset_ms != _ekf_xy_reset_ms) {
- shift_pos_xy_target(pos_shift.x * 100.0f, pos_shift.y * 100.0f);
- _ekf_xy_reset_ms = reset_ms;
- }
- }
- /// initialise ekf z axis reset check
- void AC_PosControl::init_ekf_z_reset()
- {
- float alt_shift;
- _ekf_z_reset_ms = _ahrs.getLastPosDownReset(alt_shift);
- }
- /// check for ekf position reset and adjust loiter or brake target position
- void AC_PosControl::check_for_ekf_z_reset()
- {
- // check for position shift
- float alt_shift;
- uint32_t reset_ms = _ahrs.getLastPosDownReset(alt_shift);
- if (reset_ms != 0 && reset_ms != _ekf_z_reset_ms) {
- shift_alt_target(-alt_shift * 100.0f);
- _ekf_z_reset_ms = reset_ms;
- }
- }
- /// limit vector to a given length, returns true if vector was limited
- bool AC_PosControl::limit_vector_length(float& vector_x, float& vector_y, float max_length)
- {
- float vector_length = norm(vector_x, vector_y);
- if ((vector_length > max_length) && is_positive(vector_length)) {
- vector_x *= (max_length / vector_length);
- vector_y *= (max_length / vector_length);
- return true;
- }
- return false;
- }
- /// Proportional controller with piecewise sqrt sections to constrain second derivative
- Vector3f AC_PosControl::sqrt_controller(const Vector3f& error, float p, float second_ord_lim)
- {
- if (second_ord_lim < 0.0f || is_zero(second_ord_lim) || is_zero(p)) {
- return Vector3f(error.x * p, error.y * p, error.z);
- }
- float linear_dist = second_ord_lim / sq(p);
- float error_length = norm(error.x, error.y);
- if (error_length > linear_dist) {
- float first_order_scale = safe_sqrt(2.0f * second_ord_lim * (error_length - (linear_dist * 0.5f))) / error_length;
- return Vector3f(error.x * first_order_scale, error.y * first_order_scale, error.z);
- } else {
- return Vector3f(error.x * p, error.y * p, error.z);
- }
- }
- bool AC_PosControl::pre_arm_checks(const char *param_prefix,
- char *failure_msg,
- const uint8_t failure_msg_len)
- {
- // validate AC_P members:
- const struct {
- const char *pid_name;
- AC_P &p;
- } ps[] = {
- { "POSXY", get_pos_xy_p() },
- { "POSZ", get_pos_z_p() },
- { "VELZ", get_vel_z_p() },
- };
- for (uint8_t i=0; i<ARRAY_SIZE(ps); i++) {
- // all AC_P's must have a positive P value:
- if (!is_positive(ps[i].p.kP())) {
- hal.util->snprintf(failure_msg, failure_msg_len, "%s_%s_P must be > 0", param_prefix, ps[i].pid_name);
- return false;
- }
- }
- // z-axis acceleration control PID doesn't use FF, so P and I must be positive
- if (!is_positive(get_accel_z_pid().kP())) {
- hal.util->snprintf(failure_msg, failure_msg_len, "%s_ACCZ_P must be > 0", param_prefix);
- return false;
- }
- if (!is_positive(get_accel_z_pid().kI())) {
- hal.util->snprintf(failure_msg, failure_msg_len, "%s_ACCZ_I must be > 0", param_prefix);
- return false;
- }
- return true;
- }
|