123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650 |
- #include <AP_HAL/AP_HAL.h>
- #include "AP_NavEKF2.h"
- #include "AP_NavEKF2_core.h"
- #include <AP_AHRS/AP_AHRS.h>
- #include <AP_Vehicle/AP_Vehicle.h>
- #include <GCS_MAVLink/GCS.h>
- #include <AP_GPS/AP_GPS.h>
- #include <stdio.h>
- extern const AP_HAL::HAL& hal;
- #define earthRate 0.000072921f // earth rotation rate (rad/sec)
- // initial imu bias uncertainty (deg/sec)
- #define INIT_ACCEL_BIAS_UNCERTAINTY 0.5f
- // maximum allowed gyro bias (rad/sec)
- #define GYRO_BIAS_LIMIT 0.5f
- /*
- to run EK2 timing tests you need to set ENABLE_EKF_TIMING to 1, plus setup as follows:
- - copter at 400Hz
- - INS_FAST_SAMPLE=0
- - EKF2_MAG_CAL=4
- - GPS_TYPE=14
- - load fakegps in mavproxy
- - ensure a compass is enabled
- - wait till EK2 reports "using GPS" (this is important, ignore earlier results)
- DO NOT FLY WITH THIS ENABLED
- */
- #define ENABLE_EKF_TIMING 0
- // constructor
- NavEKF2_core::NavEKF2_core(NavEKF2 *_frontend) :
- _perf_UpdateFilter(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_UpdateFilter")),
- _perf_CovariancePrediction(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_CovariancePrediction")),
- _perf_FuseVelPosNED(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseVelPosNED")),
- _perf_FuseMagnetometer(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseMagnetometer")),
- _perf_FuseAirspeed(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseAirspeed")),
- _perf_FuseSideslip(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseSideslip")),
- _perf_TerrainOffset(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_TerrainOffset")),
- _perf_FuseOptFlow(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_FuseOptFlow")),
- frontend(_frontend)
- {
- _perf_test[0] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test0");
- _perf_test[1] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test1");
- _perf_test[2] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test2");
- _perf_test[3] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test3");
- _perf_test[4] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test4");
- _perf_test[5] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test5");
- _perf_test[6] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test6");
- _perf_test[7] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test7");
- _perf_test[8] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test8");
- _perf_test[9] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK2_Test9");
- }
- // setup this core backend
- bool NavEKF2_core::setup_core(uint8_t _imu_index, uint8_t _core_index)
- {
- imu_index = _imu_index;
- gyro_index_active = _imu_index;
- accel_index_active = _imu_index;
- core_index = _core_index;
- _ahrs = frontend->_ahrs;
- /*
- the imu_buffer_length needs to cope with a 260ms delay at a
- maximum fusion rate of 100Hz. Non-imu data coming in at faster
- than 100Hz is downsampled. For 50Hz main loop rate we need a
- shorter buffer.
- */
- if (AP::ins().get_sample_rate() < 100) {
- imu_buffer_length = 13;
- } else {
- // maximum 260 msec delay at 100 Hz fusion rate
- imu_buffer_length = 26;
- }
- if(!storedGPS.init(OBS_BUFFER_LENGTH)) {
- return false;
- }
- if(!storedMag.init(OBS_BUFFER_LENGTH)) {
- return false;
- }
- if(!storedBaro.init(OBS_BUFFER_LENGTH)) {
- return false;
- }
- if(!storedTAS.init(OBS_BUFFER_LENGTH)) {
- return false;
- }
- if(!storedOF.init(FLOW_BUFFER_LENGTH)) {
- return false;
- }
- // Note: the use of dual range finders potentially doubles the amount of to be stored
- if(!storedRange.init(2*OBS_BUFFER_LENGTH)) {
- return false;
- }
- // Note: range beacon data is read one beacon at a time and can arrive at a high rate
- if(!storedRangeBeacon.init(imu_buffer_length)) {
- return false;
- }
- if(!storedExtNav.init(OBS_BUFFER_LENGTH)) {
- return false;
- }
- if(!storedIMU.init(imu_buffer_length)) {
- return false;
- }
- if(!storedOutput.init(imu_buffer_length)) {
- return false;
- }
- return true;
- }
-
- /********************************************************
- * INIT FUNCTIONS *
- ********************************************************/
- // Use a function call rather than a constructor to initialise variables because it enables the filter to be re-started in flight if necessary.
- void NavEKF2_core::InitialiseVariables()
- {
- // calculate the nominal filter update rate
- const AP_InertialSensor &ins = AP::ins();
- localFilterTimeStep_ms = (uint8_t)(1000*ins.get_loop_delta_t());
- localFilterTimeStep_ms = MAX(localFilterTimeStep_ms,10);
- // initialise time stamps
- imuSampleTime_ms = frontend->imuSampleTime_us / 1000;
- prevTasStep_ms = imuSampleTime_ms;
- prevBetaStep_ms = imuSampleTime_ms;
- lastBaroReceived_ms = imuSampleTime_ms;
- lastVelPassTime_ms = 0;
- lastPosPassTime_ms = 0;
- lastHgtPassTime_ms = 0;
- lastTasPassTime_ms = 0;
- lastYawTime_ms = imuSampleTime_ms;
- lastTimeGpsReceived_ms = 0;
- secondLastGpsTime_ms = 0;
- lastDecayTime_ms = imuSampleTime_ms;
- timeAtLastAuxEKF_ms = imuSampleTime_ms;
- flowValidMeaTime_ms = imuSampleTime_ms;
- rngValidMeaTime_ms = imuSampleTime_ms;
- flowMeaTime_ms = 0;
- prevFlowFuseTime_ms = 0;
- gndHgtValidTime_ms = 0;
- ekfStartTime_ms = imuSampleTime_ms;
- lastGpsVelFail_ms = 0;
- lastGpsVelPass_ms = 0;
- lastGpsAidBadTime_ms = 0;
- timeTasReceived_ms = 0;
- lastPreAlignGpsCheckTime_ms = imuSampleTime_ms;
- lastPosReset_ms = 0;
- lastVelReset_ms = 0;
- lastPosResetD_ms = 0;
- lastRngMeasTime_ms = 0;
- terrainHgtStableSet_ms = 0;
- // initialise other variables
- gpsNoiseScaler = 1.0f;
- hgtTimeout = true;
- tasTimeout = true;
- badIMUdata = false;
- dtIMUavg = 0.0025f;
- dtEkfAvg = EKF_TARGET_DT;
- dt = 0;
- velDotNEDfilt.zero();
- lastKnownPositionNE.zero();
- prevTnb.zero();
- memset(&P[0][0], 0, sizeof(P));
- memset(&KH[0][0], 0, sizeof(KH));
- memset(&KHP[0][0], 0, sizeof(KHP));
- memset(&nextP[0][0], 0, sizeof(nextP));
- flowDataValid = false;
- rangeDataToFuse = false;
- Popt = 0.0f;
- terrainState = 0.0f;
- prevPosN = stateStruct.position.x;
- prevPosE = stateStruct.position.y;
- inhibitGndState = false;
- flowGyroBias.x = 0;
- flowGyroBias.y = 0;
- heldVelNE.zero();
- PV_AidingMode = AID_NONE;
- PV_AidingModePrev = AID_NONE;
- posTimeout = true;
- velTimeout = true;
- memset(&faultStatus, 0, sizeof(faultStatus));
- hgtRate = 0.0f;
- mag_state.q0 = 1;
- mag_state.DCM.identity();
- onGround = true;
- prevOnGround = true;
- inFlight = false;
- prevInFlight = false;
- manoeuvring = false;
- inhibitWindStates = true;
- gndOffsetValid = false;
- validOrigin = false;
- takeoffExpectedSet_ms = 0;
- expectGndEffectTakeoff = false;
- touchdownExpectedSet_ms = 0;
- expectGndEffectTouchdown = false;
- gpsSpdAccuracy = 0.0f;
- gpsPosAccuracy = 0.0f;
- gpsHgtAccuracy = 0.0f;
- baroHgtOffset = 0.0f;
- yawResetAngle = 0.0f;
- lastYawReset_ms = 0;
- tiltErrFilt = 1.0f;
- tiltAlignComplete = false;
- stateIndexLim = 23;
- baroStoreIndex = 0;
- rangeStoreIndex = 0;
- magStoreIndex = 0;
- gpsStoreIndex = 0;
- tasStoreIndex = 0;
- ofStoreIndex = 0;
- delAngCorrection.zero();
- velErrintegral.zero();
- posErrintegral.zero();
- gpsGoodToAlign = false;
- gpsNotAvailable = true;
- motorsArmed = false;
- prevMotorsArmed = false;
- innovationIncrement = 0;
- lastInnovation = 0;
- memset(&gpsCheckStatus, 0, sizeof(gpsCheckStatus));
- gpsSpdAccPass = false;
- ekfInnovationsPass = false;
- sAccFilterState1 = 0.0f;
- sAccFilterState2 = 0.0f;
- lastGpsCheckTime_ms = 0;
- lastInnovPassTime_ms = 0;
- lastInnovFailTime_ms = 0;
- gpsAccuracyGood = false;
- gpsloc_prev = {};
- gpsDriftNE = 0.0f;
- gpsVertVelFilt = 0.0f;
- gpsHorizVelFilt = 0.0f;
- memset(&statesArray, 0, sizeof(statesArray));
- posDownDerivative = 0.0f;
- posDown = 0.0f;
- posVelFusionDelayed = false;
- optFlowFusionDelayed = false;
- airSpdFusionDelayed = false;
- sideSlipFusionDelayed = false;
- posResetNE.zero();
- velResetNE.zero();
- posResetD = 0.0f;
- hgtInnovFiltState = 0.0f;
- imuDataDownSampledNew.delAng.zero();
- imuDataDownSampledNew.delVel.zero();
- imuDataDownSampledNew.delAngDT = 0.0f;
- imuDataDownSampledNew.delVelDT = 0.0f;
- runUpdates = false;
- framesSincePredict = 0;
- gpsYawResetRequest = false;
- quatAtLastMagReset = stateStruct.quat;
- delAngBiasLearned = false;
- memset(&filterStatus, 0, sizeof(filterStatus));
- gpsInhibit = false;
- activeHgtSource = 0;
- memset(&rngMeasIndex, 0, sizeof(rngMeasIndex));
- memset(&storedRngMeasTime_ms, 0, sizeof(storedRngMeasTime_ms));
- memset(&storedRngMeas, 0, sizeof(storedRngMeas));
- terrainHgtStable = true;
- ekfOriginHgtVar = 0.0f;
- ekfGpsRefHgt = 0.0;
- velOffsetNED.zero();
- posOffsetNED.zero();
- memset(&velPosObs, 0, sizeof(velPosObs));
- // range beacon fusion variables
- memset((void *)&rngBcnDataNew, 0, sizeof(rngBcnDataNew));
- memset((void *)&rngBcnDataDelayed, 0, sizeof(rngBcnDataDelayed));
- rngBcnStoreIndex = 0;
- lastRngBcnPassTime_ms = 0;
- rngBcnTestRatio = 0.0f;
- rngBcnHealth = false;
- rngBcnTimeout = true;
- varInnovRngBcn = 0.0f;
- innovRngBcn = 0.0f;
- memset(&lastTimeRngBcn_ms, 0, sizeof(lastTimeRngBcn_ms));
- rngBcnDataToFuse = false;
- beaconVehiclePosNED.zero();
- beaconVehiclePosErr = 1.0f;
- rngBcnLast3DmeasTime_ms = 0;
- rngBcnGoodToAlign = false;
- lastRngBcnChecked = 0;
- receiverPos.zero();
- memset(&receiverPosCov, 0, sizeof(receiverPosCov));
- rngBcnAlignmentStarted = false;
- rngBcnAlignmentCompleted = false;
- lastBeaconIndex = 0;
- rngBcnPosSum.zero();
- numBcnMeas = 0;
- rngSum = 0.0f;
- N_beacons = 0;
- maxBcnPosD = 0.0f;
- minBcnPosD = 0.0f;
- bcnPosOffset = 0.0f;
- bcnPosOffsetMax = 0.0f;
- bcnPosOffsetMaxVar = 0.0f;
- OffsetMaxInnovFilt = 0.0f;
- bcnPosOffsetMin = 0.0f;
- bcnPosOffsetMinVar = 0.0f;
- OffsetMinInnovFilt = 0.0f;
- rngBcnFuseDataReportIndex = 0;
- memset(&rngBcnFusionReport, 0, sizeof(rngBcnFusionReport));
- last_gps_idx = 0;
- // external nav data fusion
- memset((void *)&extNavDataNew, 0, sizeof(extNavDataNew));
- memset((void *)&extNavDataDelayed, 0, sizeof(extNavDataDelayed));
- extNavDataToFuse = false;
- extNavMeasTime_ms = 0;
- extNavLastPosResetTime_ms = 0;
- extNavUsedForYaw = false;
- extNavUsedForPos = false;
- extNavYawResetRequest = false;
- // zero data buffers
- storedIMU.reset();
- storedGPS.reset();
- storedBaro.reset();
- storedTAS.reset();
- storedRange.reset();
- storedOutput.reset();
- storedRangeBeacon.reset();
- storedExtNav.reset();
- // now init mag variables
- yawAlignComplete = false;
- have_table_earth_field = false;
- InitialiseVariablesMag();
- }
- /*
- separate out the mag reset so it can be used when compass learning completes
- */
- void NavEKF2_core::InitialiseVariablesMag()
- {
- lastHealthyMagTime_ms = imuSampleTime_ms;
- lastMagUpdate_us = 0;
- magYawResetTimer_ms = imuSampleTime_ms;
- magTimeout = false;
- allMagSensorsFailed = false;
- badMagYaw = false;
- finalInflightYawInit = false;
- finalInflightMagInit = false;
- inhibitMagStates = true;
- if (_ahrs->get_compass()) {
- magSelectIndex = _ahrs->get_compass()->get_primary();
- }
- lastMagOffsetsValid = false;
- magStateResetRequest = false;
- magStateInitComplete = false;
- magYawResetRequest = false;
- posDownAtLastMagReset = stateStruct.position.z;
- yawInnovAtLastMagReset = 0.0f;
- magFieldLearned = false;
- storedMag.reset();
- }
- // Initialise the states from accelerometer and magnetometer data (if present)
- // This method can only be used when the vehicle is static
- bool NavEKF2_core::InitialiseFilterBootstrap(void)
- {
- // If we are a plane and don't have GPS lock then don't initialise
- if (assume_zero_sideslip() && AP::gps().status() < AP_GPS::GPS_OK_FIX_3D) {
- hal.util->snprintf(prearm_fail_string,
- sizeof(prearm_fail_string),
- "EKF2 init failure: No GPS lock");
- statesInitialised = false;
- return false;
- }
- if (statesInitialised) {
- // we are initialised, but we don't return true until the IMU
- // buffer has been filled. This prevents a timing
- // vulnerability with a pause in IMU data during filter startup
- readIMUData();
- readMagData();
- readGpsData();
- readBaroData();
- return storedIMU.is_filled();
- }
- // set re-used variables to zero
- InitialiseVariables();
- const AP_InertialSensor &ins = AP::ins();
- // Initialise IMU data
- dtIMUavg = ins.get_loop_delta_t();
- readIMUData();
- storedIMU.reset_history(imuDataNew);
- imuDataDelayed = imuDataNew;
- // acceleration vector in XYZ body axes measured by the IMU (m/s^2)
- Vector3f initAccVec;
- // TODO we should average accel readings over several cycles
- initAccVec = ins.get_accel(accel_index_active);
- // read the magnetometer data
- readMagData();
- // normalise the acceleration vector
- float pitch=0, roll=0;
- if (initAccVec.length() > 0.001f) {
- initAccVec.normalize();
- // calculate initial pitch angle
- pitch = asinf(initAccVec.x);
- // calculate initial roll angle
- roll = atan2f(-initAccVec.y , -initAccVec.z);
- }
- // calculate initial roll and pitch orientation
- stateStruct.quat.from_euler(roll, pitch, 0.0f);
- // initialise dynamic states
- stateStruct.velocity.zero();
- stateStruct.position.zero();
- stateStruct.angErr.zero();
- // initialise static process model states
- stateStruct.gyro_bias.zero();
- stateStruct.gyro_scale.x = 1.0f;
- stateStruct.gyro_scale.y = 1.0f;
- stateStruct.gyro_scale.z = 1.0f;
- stateStruct.accel_zbias = 0.0f;
- stateStruct.wind_vel.zero();
- stateStruct.earth_magfield.zero();
- stateStruct.body_magfield.zero();
- // read the GPS and set the position and velocity states
- readGpsData();
- ResetVelocity();
- ResetPosition();
- // read the barometer and set the height state
- readBaroData();
- ResetHeight();
- // define Earth rotation vector in the NED navigation frame
- calcEarthRateNED(earthRateNED, _ahrs->get_home().lat);
- // initialise the covariance matrix
- CovarianceInit();
- // reset output states
- StoreOutputReset();
- // set to true now that states have be initialised
- statesInitialised = true;
- // reset inactive biases
- for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
- inactiveBias[i].gyro_bias.zero();
- inactiveBias[i].accel_zbias = 0;
- inactiveBias[i].gyro_scale.x = 1;
- inactiveBias[i].gyro_scale.y = 1;
- inactiveBias[i].gyro_scale.z = 1;
- }
- // we initially return false to wait for the IMU buffer to fill
- return false;
- }
- // initialise the covariance matrix
- void NavEKF2_core::CovarianceInit()
- {
- // zero the matrix
- memset(&P[0][0], 0, sizeof(P));
- // attitude error
- P[0][0] = 0.1f;
- P[1][1] = 0.1f;
- P[2][2] = 0.1f;
- // velocities
- P[3][3] = sq(frontend->_gpsHorizVelNoise);
- P[4][4] = P[3][3];
- P[5][5] = sq(frontend->_gpsVertVelNoise);
- // positions
- P[6][6] = sq(frontend->_gpsHorizPosNoise);
- P[7][7] = P[6][6];
- P[8][8] = sq(frontend->_baroAltNoise);
- // gyro delta angle biases
- P[9][9] = sq(radians(InitialGyroBiasUncertainty() * dtEkfAvg));
- P[10][10] = P[9][9];
- P[11][11] = P[9][9];
- // gyro scale factor biases
- P[12][12] = sq(1e-3);
- P[13][13] = P[12][12];
- P[14][14] = P[12][12];
- // Z delta velocity bias
- P[15][15] = sq(INIT_ACCEL_BIAS_UNCERTAINTY * dtEkfAvg);
- // earth magnetic field
- P[16][16] = 0.0f;
- P[17][17] = P[16][16];
- P[18][18] = P[16][16];
- // body magnetic field
- P[19][19] = 0.0f;
- P[20][20] = P[19][19];
- P[21][21] = P[19][19];
- // wind velocities
- P[22][22] = 0.0f;
- P[23][23] = P[22][22];
- // optical flow ground height covariance
- Popt = 0.25f;
- }
- /********************************************************
- * UPDATE FUNCTIONS *
- ********************************************************/
- // Update Filter States - this should be called whenever new IMU data is available
- void NavEKF2_core::UpdateFilter(bool predict)
- {
- // Set the flag to indicate to the filter that the front-end has given permission for a new state prediction cycle to be started
- startPredictEnabled = predict;
- // don't run filter updates if states have not been initialised
- if (!statesInitialised) {
- return;
- }
- // start the timer used for load measurement
- #if ENABLE_EKF_TIMING
- void *istate = hal.scheduler->disable_interrupts_save();
- static uint32_t timing_start_us;
- timing_start_us = AP_HAL::micros();
- #endif
- hal.util->perf_begin(_perf_UpdateFilter);
- fill_scratch_variables();
- // TODO - in-flight restart method
- //get starting time for update step
- imuSampleTime_ms = frontend->imuSampleTime_us / 1000;
- // Check arm status and perform required checks and mode changes
- controlFilterModes();
- // read IMU data as delta angles and velocities
- readIMUData();
- // Run the EKF equations to estimate at the fusion time horizon if new IMU data is available in the buffer
- if (runUpdates) {
- // Predict states using IMU data from the delayed time horizon
- UpdateStrapdownEquationsNED();
- // Predict the covariance growth
- CovariancePrediction();
- // Update states using magnetometer data
- SelectMagFusion();
- // Update states using GPS and altimeter data
- SelectVelPosFusion();
- // Update states using range beacon data
- SelectRngBcnFusion();
- // Update states using optical flow data
- SelectFlowFusion();
- // Update states using airspeed data
- SelectTasFusion();
- // Update states using sideslip constraint assumption for fly-forward vehicles
- SelectBetaFusion();
- // Update the filter status
- updateFilterStatus();
- }
- // Wind output forward from the fusion to output time horizon
- calcOutputStates();
- // stop the timer used for load measurement
- hal.util->perf_end(_perf_UpdateFilter);
- #if ENABLE_EKF_TIMING
- static uint32_t total_us;
- static uint32_t timing_counter;
- total_us += AP_HAL::micros() - timing_start_us;
- if (timing_counter++ == 4000) {
- hal.console->printf("ekf2 avg %.2f us\n", total_us / float(timing_counter));
- total_us = 0;
- timing_counter = 0;
- }
- hal.scheduler->restore_interrupts(istate);
- #endif
- /*
- this is a check to cope with a vehicle sitting idle on the
- ground and getting over-confident of the state. The symptoms
- would be "gyros still settling" when the user tries to arm. In
- that state the EKF can't recover, so we do a hard reset and let
- it try again.
- */
- if (filterStatus.value != 0) {
- last_filter_ok_ms = AP_HAL::millis();
- }
- if (filterStatus.value == 0 &&
- last_filter_ok_ms != 0 &&
- AP_HAL::millis() - last_filter_ok_ms > 5000 &&
- !hal.util->get_soft_armed()) {
- // we've been unhealthy for 5 seconds after being healthy, reset the filter
- gcs().send_text(MAV_SEVERITY_WARNING, "EKF2 IMU%u forced reset",(unsigned)imu_index);
- last_filter_ok_ms = 0;
- statesInitialised = false;
- InitialiseFilterBootstrap();
- }
-
- }
- void NavEKF2_core::correctDeltaAngle(Vector3f &delAng, float delAngDT, uint8_t gyro_index)
- {
- delAng.x = delAng.x * stateStruct.gyro_scale.x;
- delAng.y = delAng.y * stateStruct.gyro_scale.y;
- delAng.z = delAng.z * stateStruct.gyro_scale.z;
- delAng -= inactiveBias[gyro_index].gyro_bias * (delAngDT / dtEkfAvg);
- }
- void NavEKF2_core::correctDeltaVelocity(Vector3f &delVel, float delVelDT, uint8_t accel_index)
- {
- delVel.z -= inactiveBias[accel_index].accel_zbias * (delVelDT / dtEkfAvg);
- }
- /*
- * Update the quaternion, velocity and position states using delayed IMU measurements
- * because the EKF is running on a delayed time horizon. Note that the quaternion is
- * not used by the EKF equations, which instead estimate the error in the attitude of
- * the vehicle when each observation is fused. This attitude error is then used to correct
- * the quaternion.
- */
- void NavEKF2_core::UpdateStrapdownEquationsNED()
- {
- // update the quaternion states by rotating from the previous attitude through
- // the delta angle rotation quaternion and normalise
- // apply correction for earth's rotation rate
- // % * - and + operators have been overloaded
- stateStruct.quat.rotate(delAngCorrected - prevTnb * earthRateNED*imuDataDelayed.delAngDT);
- stateStruct.quat.normalize();
- // transform body delta velocities to delta velocities in the nav frame
- // use the nav frame from previous time step as the delta velocities
- // have been rotated into that frame
- // * and + operators have been overloaded
- Vector3f delVelNav; // delta velocity vector in earth axes
- delVelNav = prevTnb.mul_transpose(delVelCorrected);
- delVelNav.z += GRAVITY_MSS*imuDataDelayed.delVelDT;
- // calculate the body to nav cosine matrix
- stateStruct.quat.inverse().rotation_matrix(prevTnb);
- // calculate the rate of change of velocity (used for launch detect and other functions)
- velDotNED = delVelNav / imuDataDelayed.delVelDT;
- // apply a first order lowpass filter
- velDotNEDfilt = velDotNED * 0.05f + velDotNEDfilt * 0.95f;
- // calculate a magnitude of the filtered nav acceleration (required for GPS
- // variance estimation)
- accNavMag = velDotNEDfilt.length();
- accNavMagHoriz = norm(velDotNEDfilt.x , velDotNEDfilt.y);
- // if we are not aiding, then limit the horizontal magnitude of acceleration
- // to prevent large manoeuvre transients disturbing the attitude
- if ((PV_AidingMode == AID_NONE) && (accNavMagHoriz > 5.0f)) {
- float gain = 5.0f/accNavMagHoriz;
- delVelNav.x *= gain;
- delVelNav.y *= gain;
- }
- // save velocity for use in trapezoidal integration for position calcuation
- Vector3f lastVelocity = stateStruct.velocity;
- // sum delta velocities to get velocity
- stateStruct.velocity += delVelNav;
- // apply a trapezoidal integration to velocities to calculate position
- stateStruct.position += (stateStruct.velocity + lastVelocity) * (imuDataDelayed.delVelDT*0.5f);
- // accumulate the bias delta angle and time since last reset by an OF measurement arrival
- delAngBodyOF += delAngCorrected;
- delTimeOF += imuDataDelayed.delAngDT;
- // limit states to protect against divergence
- ConstrainStates();
- }
- /*
- * Propagate PVA solution forward from the fusion time horizon to the current time horizon
- * using simple observer which performs two functions:
- * 1) Corrects for the delayed time horizon used by the EKF.
- * 2) Applies a LPF to state corrections to prevent 'stepping' in states due to measurement
- * fusion introducing unwanted noise into the control loops.
- * The inspiration for using a complementary filter to correct for time delays in the EKF
- * is based on the work by A Khosravian.
- *
- * "Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements"
- * A Khosravian, J Trumpf, R Mahony, T Hamel, Australian National University
- */
- void NavEKF2_core::calcOutputStates()
- {
- // apply corrections to the IMU data
- Vector3f delAngNewCorrected = imuDataNew.delAng;
- Vector3f delVelNewCorrected = imuDataNew.delVel;
- correctDeltaAngle(delAngNewCorrected, imuDataNew.delAngDT, imuDataNew.gyro_index);
- correctDeltaVelocity(delVelNewCorrected, imuDataNew.delVelDT, imuDataNew.accel_index);
- // apply corections to track EKF solution
- Vector3f delAng = delAngNewCorrected + delAngCorrection;
- // convert the rotation vector to its equivalent quaternion
- Quaternion deltaQuat;
- deltaQuat.from_axis_angle(delAng);
- // update the quaternion states by rotating from the previous attitude through
- // the delta angle rotation quaternion and normalise
- outputDataNew.quat *= deltaQuat;
- outputDataNew.quat.normalize();
- // calculate the body to nav cosine matrix
- Matrix3f Tbn_temp;
- outputDataNew.quat.rotation_matrix(Tbn_temp);
- // transform body delta velocities to delta velocities in the nav frame
- Vector3f delVelNav = Tbn_temp*delVelNewCorrected;
- delVelNav.z += GRAVITY_MSS*imuDataNew.delVelDT;
- // save velocity for use in trapezoidal integration for position calcuation
- Vector3f lastVelocity = outputDataNew.velocity;
- // sum delta velocities to get velocity
- outputDataNew.velocity += delVelNav;
- // apply a trapezoidal integration to velocities to calculate position
- outputDataNew.position += (outputDataNew.velocity + lastVelocity) * (imuDataNew.delVelDT*0.5f);
- // If the IMU accelerometer is offset from the body frame origin, then calculate corrections
- // that can be added to the EKF velocity and position outputs so that they represent the velocity
- // and position of the body frame origin.
- // Note the * operator has been overloaded to operate as a dot product
- if (!accelPosOffset.is_zero()) {
- // calculate the average angular rate across the last IMU update
- // note delAngDT is prevented from being zero in readIMUData()
- Vector3f angRate = imuDataNew.delAng * (1.0f/imuDataNew.delAngDT);
- // Calculate the velocity of the body frame origin relative to the IMU in body frame
- // and rotate into earth frame. Note % operator has been overloaded to perform a cross product
- Vector3f velBodyRelIMU = angRate % (- accelPosOffset);
- velOffsetNED = Tbn_temp * velBodyRelIMU;
- // calculate the earth frame position of the body frame origin relative to the IMU
- posOffsetNED = Tbn_temp * (- accelPosOffset);
- } else {
- velOffsetNED.zero();
- posOffsetNED.zero();
- }
- // store INS states in a ring buffer that with the same length and time coordinates as the IMU data buffer
- if (runUpdates) {
- // store the states at the output time horizon
- storedOutput[storedIMU.get_youngest_index()] = outputDataNew;
- // recall the states from the fusion time horizon
- outputDataDelayed = storedOutput[storedIMU.get_oldest_index()];
- // compare quaternion data with EKF quaternion at the fusion time horizon and calculate correction
- // divide the demanded quaternion by the estimated to get the error
- Quaternion quatErr = stateStruct.quat / outputDataDelayed.quat;
- // Convert to a delta rotation using a small angle approximation
- quatErr.normalize();
- Vector3f deltaAngErr;
- float scaler;
- if (quatErr[0] >= 0.0f) {
- scaler = 2.0f;
- } else {
- scaler = -2.0f;
- }
- deltaAngErr.x = scaler * quatErr[1];
- deltaAngErr.y = scaler * quatErr[2];
- deltaAngErr.z = scaler * quatErr[3];
- // calculate a gain that provides tight tracking of the estimator states and
- // adjust for changes in time delay to maintain consistent damping ratio of ~0.7
- float timeDelay = 1e-3f * (float)(imuDataNew.time_ms - imuDataDelayed.time_ms);
- timeDelay = fmaxf(timeDelay, dtIMUavg);
- float errorGain = 0.5f / timeDelay;
- // calculate a corrrection to the delta angle
- // that will cause the INS to track the EKF quaternions
- delAngCorrection = deltaAngErr * errorGain * dtIMUavg;
- // calculate velocity and position tracking errors
- Vector3f velErr = (stateStruct.velocity - outputDataDelayed.velocity);
- Vector3f posErr = (stateStruct.position - outputDataDelayed.position);
- // collect magnitude tracking error for diagnostics
- outputTrackError.x = deltaAngErr.length();
- outputTrackError.y = velErr.length();
- outputTrackError.z = posErr.length();
- // convert user specified time constant from centi-seconds to seconds
- float tauPosVel = constrain_float(0.01f*(float)frontend->_tauVelPosOutput, 0.1f, 0.5f);
- // calculate a gain to track the EKF position states with the specified time constant
- float velPosGain = dtEkfAvg / constrain_float(tauPosVel, dtEkfAvg, 10.0f);
- // use a PI feedback to calculate a correction that will be applied to the output state history
- posErrintegral += posErr;
- velErrintegral += velErr;
- Vector3f velCorrection = velErr * velPosGain + velErrintegral * sq(velPosGain) * 0.1f;
- Vector3f posCorrection = posErr * velPosGain + posErrintegral * sq(velPosGain) * 0.1f;
- // loop through the output filter state history and apply the corrections to the velocity and position states
- // this method is too expensive to use for the attitude states due to the quaternion operations required
- // but does not introduce a time delay in the 'correction loop' and allows smaller tracking time constants
- // to be used
- output_elements outputStates;
- for (unsigned index=0; index < imu_buffer_length; index++) {
- outputStates = storedOutput[index];
- // a constant velocity correction is applied
- outputStates.velocity += velCorrection;
- // a constant position correction is applied
- outputStates.position += posCorrection;
- // push the updated data to the buffer
- storedOutput[index] = outputStates;
- }
- // update output state to corrected values
- outputDataNew = storedOutput[storedIMU.get_youngest_index()];
- }
- }
- /*
- * Calculate the predicted state covariance matrix using algebraic equations generated with Matlab symbolic toolbox.
- * The script file used to generate these and other equations in this filter can be found here:
- * https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
- */
- void NavEKF2_core::CovariancePrediction()
- {
- hal.util->perf_begin(_perf_CovariancePrediction);
- float windVelSigma; // wind velocity 1-sigma process noise - m/s
- float dAngBiasSigma;// delta angle bias 1-sigma process noise - rad/s
- float dVelBiasSigma;// delta velocity bias 1-sigma process noise - m/s
- float dAngScaleSigma;// delta angle scale factor 1-Sigma process noise
- float magEarthSigma;// earth magnetic field 1-sigma process noise
- float magBodySigma; // body magnetic field 1-sigma process noise
- float daxNoise; // X axis delta angle noise variance rad^2
- float dayNoise; // Y axis delta angle noise variance rad^2
- float dazNoise; // Z axis delta angle noise variance rad^2
- float dvxNoise; // X axis delta velocity variance noise (m/s)^2
- float dvyNoise; // Y axis delta velocity variance noise (m/s)^2
- float dvzNoise; // Z axis delta velocity variance noise (m/s)^2
- float dvx; // X axis delta velocity (m/s)
- float dvy; // Y axis delta velocity (m/s)
- float dvz; // Z axis delta velocity (m/s)
- float dax; // X axis delta angle (rad)
- float day; // Y axis delta angle (rad)
- float daz; // Z axis delta angle (rad)
- float q0; // attitude quaternion
- float q1; // attitude quaternion
- float q2; // attitude quaternion
- float q3; // attitude quaternion
- float dax_b; // X axis delta angle measurement bias (rad)
- float day_b; // Y axis delta angle measurement bias (rad)
- float daz_b; // Z axis delta angle measurement bias (rad)
- float dax_s; // X axis delta angle measurement scale factor
- float day_s; // Y axis delta angle measurement scale factor
- float daz_s; // Z axis delta angle measurement scale factor
- float dvz_b; // Z axis delta velocity measurement bias (rad)
- Vector25 SF;
- Vector5 SG;
- Vector8 SQ;
- Vector24 processNoise;
- // calculate covariance prediction process noise
- // use filtered height rate to increase wind process noise when climbing or descending
- // this allows for wind gradient effects.
- // filter height rate using a 10 second time constant filter
- dt = imuDataDelayed.delAngDT;
- float alpha = 0.1f * dt;
- hgtRate = hgtRate * (1.0f - alpha) - stateStruct.velocity.z * alpha;
- // use filtered height rate to increase wind process noise when climbing or descending
- // this allows for wind gradient effects.
- windVelSigma = dt * constrain_float(frontend->_windVelProcessNoise, 0.0f, 1.0f) * (1.0f + constrain_float(frontend->_wndVarHgtRateScale, 0.0f, 1.0f) * fabsf(hgtRate));
- dAngBiasSigma = sq(dt) * constrain_float(frontend->_gyroBiasProcessNoise, 0.0f, 1.0f);
- dVelBiasSigma = sq(dt) * constrain_float(frontend->_accelBiasProcessNoise, 0.0f, 1.0f);
- dAngScaleSigma = dt * constrain_float(frontend->_gyroScaleProcessNoise, 0.0f, 1.0f);
- magEarthSigma = dt * constrain_float(frontend->_magEarthProcessNoise, 0.0f, 1.0f);
- magBodySigma = dt * constrain_float(frontend->_magBodyProcessNoise, 0.0f, 1.0f);
- for (uint8_t i= 0; i<=8; i++) processNoise[i] = 0.0f;
- for (uint8_t i=9; i<=11; i++) processNoise[i] = dAngBiasSigma;
- for (uint8_t i=12; i<=14; i++) processNoise[i] = dAngScaleSigma;
- if (expectGndEffectTakeoff) {
- processNoise[15] = 0.0f;
- } else {
- processNoise[15] = dVelBiasSigma;
- }
- for (uint8_t i=16; i<=18; i++) processNoise[i] = magEarthSigma;
- for (uint8_t i=19; i<=21; i++) processNoise[i] = magBodySigma;
- for (uint8_t i=22; i<=23; i++) processNoise[i] = windVelSigma;
- for (uint8_t i= 0; i<=stateIndexLim; i++) processNoise[i] = sq(processNoise[i]);
- // set variables used to calculate covariance growth
- dvx = imuDataDelayed.delVel.x;
- dvy = imuDataDelayed.delVel.y;
- dvz = imuDataDelayed.delVel.z;
- dax = imuDataDelayed.delAng.x;
- day = imuDataDelayed.delAng.y;
- daz = imuDataDelayed.delAng.z;
- q0 = stateStruct.quat[0];
- q1 = stateStruct.quat[1];
- q2 = stateStruct.quat[2];
- q3 = stateStruct.quat[3];
- dax_b = stateStruct.gyro_bias.x;
- day_b = stateStruct.gyro_bias.y;
- daz_b = stateStruct.gyro_bias.z;
- dax_s = stateStruct.gyro_scale.x;
- day_s = stateStruct.gyro_scale.y;
- daz_s = stateStruct.gyro_scale.z;
- dvz_b = stateStruct.accel_zbias;
- float _gyrNoise = constrain_float(frontend->_gyrNoise, 0.0f, 1.0f);
- daxNoise = dayNoise = dazNoise = sq(dt*_gyrNoise);
- float _accNoise = constrain_float(frontend->_accNoise, 0.0f, 10.0f);
- dvxNoise = dvyNoise = dvzNoise = sq(dt*_accNoise);
- // calculate the predicted covariance due to inertial sensor error propagation
- // we calculate the upper diagonal and copy to take advantage of symmetry
- SF[0] = daz_b/2 - (daz*daz_s)/2;
- SF[1] = day_b/2 - (day*day_s)/2;
- SF[2] = dax_b/2 - (dax*dax_s)/2;
- SF[3] = q3/2 - (q0*SF[0])/2 + (q1*SF[1])/2 - (q2*SF[2])/2;
- SF[4] = q0/2 - (q1*SF[2])/2 - (q2*SF[1])/2 + (q3*SF[0])/2;
- SF[5] = q1/2 + (q0*SF[2])/2 - (q2*SF[0])/2 - (q3*SF[1])/2;
- SF[6] = q3/2 + (q0*SF[0])/2 - (q1*SF[1])/2 - (q2*SF[2])/2;
- SF[7] = q0/2 - (q1*SF[2])/2 + (q2*SF[1])/2 - (q3*SF[0])/2;
- SF[8] = q0/2 + (q1*SF[2])/2 - (q2*SF[1])/2 - (q3*SF[0])/2;
- SF[9] = q2/2 + (q0*SF[1])/2 + (q1*SF[0])/2 + (q3*SF[2])/2;
- SF[10] = q2/2 - (q0*SF[1])/2 - (q1*SF[0])/2 + (q3*SF[2])/2;
- SF[11] = q2/2 + (q0*SF[1])/2 - (q1*SF[0])/2 - (q3*SF[2])/2;
- SF[12] = q1/2 + (q0*SF[2])/2 + (q2*SF[0])/2 + (q3*SF[1])/2;
- SF[13] = q1/2 - (q0*SF[2])/2 + (q2*SF[0])/2 - (q3*SF[1])/2;
- SF[14] = q3/2 + (q0*SF[0])/2 + (q1*SF[1])/2 + (q2*SF[2])/2;
- SF[15] = - sq(q0) - sq(q1) - sq(q2) - sq(q3);
- SF[16] = dvz_b - dvz;
- SF[17] = dvx;
- SF[18] = dvy;
- SF[19] = sq(q2);
- SF[20] = SF[19] - sq(q0) + sq(q1) - sq(q3);
- SF[21] = SF[19] + sq(q0) - sq(q1) - sq(q3);
- SF[22] = 2*q0*q1 - 2*q2*q3;
- SF[23] = SF[19] - sq(q0) - sq(q1) + sq(q3);
- SF[24] = 2*q1*q2;
- SG[0] = - sq(q0) - sq(q1) - sq(q2) - sq(q3);
- SG[1] = sq(q3);
- SG[2] = sq(q2);
- SG[3] = sq(q1);
- SG[4] = sq(q0);
- SQ[0] = - dvyNoise*(2*q0*q1 + 2*q2*q3)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvzNoise*(2*q0*q1 - 2*q2*q3)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvxNoise*(2*q0*q2 - 2*q1*q3)*(2*q0*q3 + 2*q1*q2);
- SQ[1] = dvxNoise*(2*q0*q2 - 2*q1*q3)*(SG[1] + SG[2] - SG[3] - SG[4]) + dvzNoise*(2*q0*q2 + 2*q1*q3)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvyNoise*(2*q0*q1 + 2*q2*q3)*(2*q0*q3 - 2*q1*q2);
- SQ[2] = dvyNoise*(2*q0*q3 - 2*q1*q2)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvxNoise*(2*q0*q3 + 2*q1*q2)*(SG[1] + SG[2] - SG[3] - SG[4]) - dvzNoise*(2*q0*q1 - 2*q2*q3)*(2*q0*q2 + 2*q1*q3);
- SQ[3] = sq(SG[0]);
- SQ[4] = 2*q2*q3;
- SQ[5] = 2*q1*q3;
- SQ[6] = 2*q1*q2;
- SQ[7] = SG[4];
- Vector23 SPP;
- SPP[0] = SF[17]*(2*q0*q1 + 2*q2*q3) + SF[18]*(2*q0*q2 - 2*q1*q3);
- SPP[1] = SF[18]*(2*q0*q2 + 2*q1*q3) + SF[16]*(SF[24] - 2*q0*q3);
- SPP[2] = 2*q3*SF[8] + 2*q1*SF[11] - 2*q0*SF[14] - 2*q2*SF[13];
- SPP[3] = 2*q1*SF[7] + 2*q2*SF[6] - 2*q0*SF[12] - 2*q3*SF[10];
- SPP[4] = 2*q0*SF[6] - 2*q3*SF[7] - 2*q1*SF[10] + 2*q2*SF[12];
- SPP[5] = 2*q0*SF[8] + 2*q2*SF[11] + 2*q1*SF[13] + 2*q3*SF[14];
- SPP[6] = 2*q0*SF[7] + 2*q3*SF[6] + 2*q2*SF[10] + 2*q1*SF[12];
- SPP[7] = SF[18]*SF[20] - SF[16]*(2*q0*q1 + 2*q2*q3);
- SPP[8] = 2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9];
- SPP[9] = 2*q0*SF[5] - 2*q1*SF[4] - 2*q2*SF[3] + 2*q3*SF[9];
- SPP[10] = SF[17]*SF[20] + SF[16]*(2*q0*q2 - 2*q1*q3);
- SPP[11] = SF[17]*SF[21] - SF[18]*(SF[24] + 2*q0*q3);
- SPP[12] = SF[17]*SF[22] - SF[16]*(SF[24] + 2*q0*q3);
- SPP[13] = 2*q0*SF[4] + 2*q1*SF[5] + 2*q3*SF[3] + 2*q2*SF[9];
- SPP[14] = 2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13];
- SPP[15] = SF[18]*SF[23] + SF[17]*(SF[24] - 2*q0*q3);
- SPP[16] = daz*SF[19] + daz*sq(q0) + daz*sq(q1) + daz*sq(q3);
- SPP[17] = day*SF[19] + day*sq(q0) + day*sq(q1) + day*sq(q3);
- SPP[18] = dax*SF[19] + dax*sq(q0) + dax*sq(q1) + dax*sq(q3);
- SPP[19] = SF[16]*SF[23] - SF[17]*(2*q0*q2 + 2*q1*q3);
- SPP[20] = SF[16]*SF[21] - SF[18]*SF[22];
- SPP[21] = 2*q0*q2 + 2*q1*q3;
- SPP[22] = SF[15];
- if (inhibitMagStates) {
- zeroRows(P,16,21);
- zeroCols(P,16,21);
- } else if (inhibitWindStates) {
- zeroRows(P,22,23);
- zeroCols(P,22,23);
- }
- nextP[0][0] = daxNoise*SQ[3] + SPP[5]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[9][0]*SPP[22] + P[12][0]*SPP[18] + P[2][0]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) - SPP[4]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[9][1]*SPP[22] + P[12][1]*SPP[18] + P[2][1]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) + SPP[8]*(P[0][2]*SPP[5] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18] - P[1][2]*(2*q0*SF[6] - 2*q3*SF[7] - 2*q1*SF[10] + 2*q2*SF[12])) + SPP[22]*(P[0][9]*SPP[5] - P[1][9]*SPP[4] + P[9][9]*SPP[22] + P[12][9]*SPP[18] + P[2][9]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) + SPP[18]*(P[0][12]*SPP[5] - P[1][12]*SPP[4] + P[9][12]*SPP[22] + P[12][12]*SPP[18] + P[2][12]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9]));
- nextP[0][1] = SPP[6]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) - SPP[2]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[22]*(P[0][10]*SPP[5] - P[1][10]*SPP[4] + P[2][10]*SPP[8] + P[9][10]*SPP[22] + P[12][10]*SPP[18]) + SPP[17]*(P[0][13]*SPP[5] - P[1][13]*SPP[4] + P[2][13]*SPP[8] + P[9][13]*SPP[22] + P[12][13]*SPP[18]) - (2*q0*SF[5] - 2*q1*SF[4] - 2*q2*SF[3] + 2*q3*SF[9])*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]);
- nextP[1][1] = dayNoise*SQ[3] - SPP[2]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[6]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) - SPP[9]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) + SPP[22]*(P[1][10]*SPP[6] - P[0][10]*SPP[2] - P[2][10]*SPP[9] + P[10][10]*SPP[22] + P[13][10]*SPP[17]) + SPP[17]*(P[1][13]*SPP[6] - P[0][13]*SPP[2] - P[2][13]*SPP[9] + P[10][13]*SPP[22] + P[13][13]*SPP[17]);
- nextP[0][2] = SPP[13]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) - SPP[3]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) + SPP[22]*(P[0][11]*SPP[5] - P[1][11]*SPP[4] + P[2][11]*SPP[8] + P[9][11]*SPP[22] + P[12][11]*SPP[18]) + SPP[16]*(P[0][14]*SPP[5] - P[1][14]*SPP[4] + P[2][14]*SPP[8] + P[9][14]*SPP[22] + P[12][14]*SPP[18]) + (2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13])*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]);
- nextP[1][2] = SPP[13]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) - SPP[3]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) + SPP[22]*(P[1][11]*SPP[6] - P[0][11]*SPP[2] - P[2][11]*SPP[9] + P[10][11]*SPP[22] + P[13][11]*SPP[17]) + SPP[16]*(P[1][14]*SPP[6] - P[0][14]*SPP[2] - P[2][14]*SPP[9] + P[10][14]*SPP[22] + P[13][14]*SPP[17]) + (2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13])*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]);
- nextP[2][2] = dazNoise*SQ[3] - SPP[3]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]) + SPP[14]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[13]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) + SPP[22]*(P[0][11]*SPP[14] - P[1][11]*SPP[3] + P[2][11]*SPP[13] + P[11][11]*SPP[22] + P[14][11]*SPP[16]) + SPP[16]*(P[0][14]*SPP[14] - P[1][14]*SPP[3] + P[2][14]*SPP[13] + P[11][14]*SPP[22] + P[14][14]*SPP[16]);
- nextP[0][3] = P[0][3]*SPP[5] - P[1][3]*SPP[4] + P[2][3]*SPP[8] + P[9][3]*SPP[22] + P[12][3]*SPP[18] + SPP[1]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[15]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) - SPP[21]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]);
- nextP[1][3] = P[1][3]*SPP[6] - P[0][3]*SPP[2] - P[2][3]*SPP[9] + P[10][3]*SPP[22] + P[13][3]*SPP[17] + SPP[1]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[15]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) - SPP[21]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]);
- nextP[2][3] = P[0][3]*SPP[14] - P[1][3]*SPP[3] + P[2][3]*SPP[13] + P[11][3]*SPP[22] + P[14][3]*SPP[16] + SPP[1]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[15]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) - SPP[21]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]);
- nextP[3][3] = P[3][3] + P[0][3]*SPP[1] + P[1][3]*SPP[19] + P[2][3]*SPP[15] - P[15][3]*SPP[21] + dvyNoise*sq(SQ[6] - 2*q0*q3) + dvzNoise*sq(SQ[5] + 2*q0*q2) + SPP[1]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[19]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]) + SPP[15]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]) - SPP[21]*(P[3][15] + P[0][15]*SPP[1] + P[2][15]*SPP[15] - P[15][15]*SPP[21] + P[1][15]*(SF[16]*SF[23] - SF[17]*SPP[21])) + dvxNoise*sq(SG[1] + SG[2] - SG[3] - SQ[7]);
- nextP[0][4] = P[0][4]*SPP[5] - P[1][4]*SPP[4] + P[2][4]*SPP[8] + P[9][4]*SPP[22] + P[12][4]*SPP[18] + SF[22]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) + SPP[12]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) + SPP[20]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[11]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]);
- nextP[1][4] = P[1][4]*SPP[6] - P[0][4]*SPP[2] - P[2][4]*SPP[9] + P[10][4]*SPP[22] + P[13][4]*SPP[17] + SF[22]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) + SPP[12]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) + SPP[20]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[11]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]);
- nextP[2][4] = P[0][4]*SPP[14] - P[1][4]*SPP[3] + P[2][4]*SPP[13] + P[11][4]*SPP[22] + P[14][4]*SPP[16] + SF[22]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) + SPP[12]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]) + SPP[20]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[11]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]);
- nextP[3][4] = P[3][4] + SQ[2] + P[0][4]*SPP[1] + P[1][4]*SPP[19] + P[2][4]*SPP[15] - P[15][4]*SPP[21] + SF[22]*(P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21]) + SPP[12]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]) + SPP[20]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[11]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]);
- nextP[4][4] = P[4][4] + P[15][4]*SF[22] + P[0][4]*SPP[20] + P[1][4]*SPP[12] + P[2][4]*SPP[11] + dvxNoise*sq(SQ[6] + 2*q0*q3) + dvzNoise*sq(SQ[4] - 2*q0*q1) + SF[22]*(P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11]) + SPP[12]*(P[4][1] + P[15][1]*SF[22] + P[0][1]*SPP[20] + P[1][1]*SPP[12] + P[2][1]*SPP[11]) + SPP[20]*(P[4][0] + P[15][0]*SF[22] + P[0][0]*SPP[20] + P[1][0]*SPP[12] + P[2][0]*SPP[11]) + SPP[11]*(P[4][2] + P[15][2]*SF[22] + P[0][2]*SPP[20] + P[1][2]*SPP[12] + P[2][2]*SPP[11]) + dvyNoise*sq(SG[1] - SG[2] + SG[3] - SQ[7]);
- nextP[0][5] = P[0][5]*SPP[5] - P[1][5]*SPP[4] + P[2][5]*SPP[8] + P[9][5]*SPP[22] + P[12][5]*SPP[18] + SF[20]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) - SPP[7]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[0]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) + SPP[10]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]);
- nextP[1][5] = P[1][5]*SPP[6] - P[0][5]*SPP[2] - P[2][5]*SPP[9] + P[10][5]*SPP[22] + P[13][5]*SPP[17] + SF[20]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) - SPP[7]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[0]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) + SPP[10]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]);
- nextP[2][5] = P[0][5]*SPP[14] - P[1][5]*SPP[3] + P[2][5]*SPP[13] + P[11][5]*SPP[22] + P[14][5]*SPP[16] + SF[20]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) - SPP[7]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[0]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) + SPP[10]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]);
- nextP[3][5] = P[3][5] + SQ[1] + P[0][5]*SPP[1] + P[1][5]*SPP[19] + P[2][5]*SPP[15] - P[15][5]*SPP[21] + SF[20]*(P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21]) - SPP[7]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[0]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]) + SPP[10]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]);
- nextP[4][5] = P[4][5] + SQ[0] + P[15][5]*SF[22] + P[0][5]*SPP[20] + P[1][5]*SPP[12] + P[2][5]*SPP[11] + SF[20]*(P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11]) - SPP[7]*(P[4][0] + P[15][0]*SF[22] + P[0][0]*SPP[20] + P[1][0]*SPP[12] + P[2][0]*SPP[11]) + SPP[0]*(P[4][2] + P[15][2]*SF[22] + P[0][2]*SPP[20] + P[1][2]*SPP[12] + P[2][2]*SPP[11]) + SPP[10]*(P[4][1] + P[15][1]*SF[22] + P[0][1]*SPP[20] + P[1][1]*SPP[12] + P[2][1]*SPP[11]);
- nextP[5][5] = P[5][5] + P[15][5]*SF[20] - P[0][5]*SPP[7] + P[1][5]*SPP[10] + P[2][5]*SPP[0] + dvxNoise*sq(SQ[5] - 2*q0*q2) + dvyNoise*sq(SQ[4] + 2*q0*q1) + SF[20]*(P[5][15] + P[15][15]*SF[20] - P[0][15]*SPP[7] + P[1][15]*SPP[10] + P[2][15]*SPP[0]) - SPP[7]*(P[5][0] + P[15][0]*SF[20] - P[0][0]*SPP[7] + P[1][0]*SPP[10] + P[2][0]*SPP[0]) + SPP[0]*(P[5][2] + P[15][2]*SF[20] - P[0][2]*SPP[7] + P[1][2]*SPP[10] + P[2][2]*SPP[0]) + SPP[10]*(P[5][1] + P[15][1]*SF[20] - P[0][1]*SPP[7] + P[1][1]*SPP[10] + P[2][1]*SPP[0]) + dvzNoise*sq(SG[1] - SG[2] - SG[3] + SQ[7]);
- nextP[0][6] = P[0][6]*SPP[5] - P[1][6]*SPP[4] + P[2][6]*SPP[8] + P[9][6]*SPP[22] + P[12][6]*SPP[18] + dt*(P[0][3]*SPP[5] - P[1][3]*SPP[4] + P[2][3]*SPP[8] + P[9][3]*SPP[22] + P[12][3]*SPP[18]);
- nextP[1][6] = P[1][6]*SPP[6] - P[0][6]*SPP[2] - P[2][6]*SPP[9] + P[10][6]*SPP[22] + P[13][6]*SPP[17] + dt*(P[1][3]*SPP[6] - P[0][3]*SPP[2] - P[2][3]*SPP[9] + P[10][3]*SPP[22] + P[13][3]*SPP[17]);
- nextP[2][6] = P[0][6]*SPP[14] - P[1][6]*SPP[3] + P[2][6]*SPP[13] + P[11][6]*SPP[22] + P[14][6]*SPP[16] + dt*(P[0][3]*SPP[14] - P[1][3]*SPP[3] + P[2][3]*SPP[13] + P[11][3]*SPP[22] + P[14][3]*SPP[16]);
- nextP[3][6] = P[3][6] + P[0][6]*SPP[1] + P[1][6]*SPP[19] + P[2][6]*SPP[15] - P[15][6]*SPP[21] + dt*(P[3][3] + P[0][3]*SPP[1] + P[1][3]*SPP[19] + P[2][3]*SPP[15] - P[15][3]*SPP[21]);
- nextP[4][6] = P[4][6] + P[15][6]*SF[22] + P[0][6]*SPP[20] + P[1][6]*SPP[12] + P[2][6]*SPP[11] + dt*(P[4][3] + P[15][3]*SF[22] + P[0][3]*SPP[20] + P[1][3]*SPP[12] + P[2][3]*SPP[11]);
- nextP[5][6] = P[5][6] + P[15][6]*SF[20] - P[0][6]*SPP[7] + P[1][6]*SPP[10] + P[2][6]*SPP[0] + dt*(P[5][3] + P[15][3]*SF[20] - P[0][3]*SPP[7] + P[1][3]*SPP[10] + P[2][3]*SPP[0]);
- nextP[6][6] = P[6][6] + P[3][6]*dt + dt*(P[6][3] + P[3][3]*dt);
- nextP[0][7] = P[0][7]*SPP[5] - P[1][7]*SPP[4] + P[2][7]*SPP[8] + P[9][7]*SPP[22] + P[12][7]*SPP[18] + dt*(P[0][4]*SPP[5] - P[1][4]*SPP[4] + P[2][4]*SPP[8] + P[9][4]*SPP[22] + P[12][4]*SPP[18]);
- nextP[1][7] = P[1][7]*SPP[6] - P[0][7]*SPP[2] - P[2][7]*SPP[9] + P[10][7]*SPP[22] + P[13][7]*SPP[17] + dt*(P[1][4]*SPP[6] - P[0][4]*SPP[2] - P[2][4]*SPP[9] + P[10][4]*SPP[22] + P[13][4]*SPP[17]);
- nextP[2][7] = P[0][7]*SPP[14] - P[1][7]*SPP[3] + P[2][7]*SPP[13] + P[11][7]*SPP[22] + P[14][7]*SPP[16] + dt*(P[0][4]*SPP[14] - P[1][4]*SPP[3] + P[2][4]*SPP[13] + P[11][4]*SPP[22] + P[14][4]*SPP[16]);
- nextP[3][7] = P[3][7] + P[0][7]*SPP[1] + P[1][7]*SPP[19] + P[2][7]*SPP[15] - P[15][7]*SPP[21] + dt*(P[3][4] + P[0][4]*SPP[1] + P[1][4]*SPP[19] + P[2][4]*SPP[15] - P[15][4]*SPP[21]);
- nextP[4][7] = P[4][7] + P[15][7]*SF[22] + P[0][7]*SPP[20] + P[1][7]*SPP[12] + P[2][7]*SPP[11] + dt*(P[4][4] + P[15][4]*SF[22] + P[0][4]*SPP[20] + P[1][4]*SPP[12] + P[2][4]*SPP[11]);
- nextP[5][7] = P[5][7] + P[15][7]*SF[20] - P[0][7]*SPP[7] + P[1][7]*SPP[10] + P[2][7]*SPP[0] + dt*(P[5][4] + P[15][4]*SF[20] - P[0][4]*SPP[7] + P[1][4]*SPP[10] + P[2][4]*SPP[0]);
- nextP[6][7] = P[6][7] + P[3][7]*dt + dt*(P[6][4] + P[3][4]*dt);
- nextP[7][7] = P[7][7] + P[4][7]*dt + dt*(P[7][4] + P[4][4]*dt);
- nextP[0][8] = P[0][8]*SPP[5] - P[1][8]*SPP[4] + P[2][8]*SPP[8] + P[9][8]*SPP[22] + P[12][8]*SPP[18] + dt*(P[0][5]*SPP[5] - P[1][5]*SPP[4] + P[2][5]*SPP[8] + P[9][5]*SPP[22] + P[12][5]*SPP[18]);
- nextP[1][8] = P[1][8]*SPP[6] - P[0][8]*SPP[2] - P[2][8]*SPP[9] + P[10][8]*SPP[22] + P[13][8]*SPP[17] + dt*(P[1][5]*SPP[6] - P[0][5]*SPP[2] - P[2][5]*SPP[9] + P[10][5]*SPP[22] + P[13][5]*SPP[17]);
- nextP[2][8] = P[0][8]*SPP[14] - P[1][8]*SPP[3] + P[2][8]*SPP[13] + P[11][8]*SPP[22] + P[14][8]*SPP[16] + dt*(P[0][5]*SPP[14] - P[1][5]*SPP[3] + P[2][5]*SPP[13] + P[11][5]*SPP[22] + P[14][5]*SPP[16]);
- nextP[3][8] = P[3][8] + P[0][8]*SPP[1] + P[1][8]*SPP[19] + P[2][8]*SPP[15] - P[15][8]*SPP[21] + dt*(P[3][5] + P[0][5]*SPP[1] + P[1][5]*SPP[19] + P[2][5]*SPP[15] - P[15][5]*SPP[21]);
- nextP[4][8] = P[4][8] + P[15][8]*SF[22] + P[0][8]*SPP[20] + P[1][8]*SPP[12] + P[2][8]*SPP[11] + dt*(P[4][5] + P[15][5]*SF[22] + P[0][5]*SPP[20] + P[1][5]*SPP[12] + P[2][5]*SPP[11]);
- nextP[5][8] = P[5][8] + P[15][8]*SF[20] - P[0][8]*SPP[7] + P[1][8]*SPP[10] + P[2][8]*SPP[0] + dt*(P[5][5] + P[15][5]*SF[20] - P[0][5]*SPP[7] + P[1][5]*SPP[10] + P[2][5]*SPP[0]);
- nextP[6][8] = P[6][8] + P[3][8]*dt + dt*(P[6][5] + P[3][5]*dt);
- nextP[7][8] = P[7][8] + P[4][8]*dt + dt*(P[7][5] + P[4][5]*dt);
- nextP[8][8] = P[8][8] + P[5][8]*dt + dt*(P[8][5] + P[5][5]*dt);
- nextP[0][9] = P[0][9]*SPP[5] - P[1][9]*SPP[4] + P[2][9]*SPP[8] + P[9][9]*SPP[22] + P[12][9]*SPP[18];
- nextP[1][9] = P[1][9]*SPP[6] - P[0][9]*SPP[2] - P[2][9]*SPP[9] + P[10][9]*SPP[22] + P[13][9]*SPP[17];
- nextP[2][9] = P[0][9]*SPP[14] - P[1][9]*SPP[3] + P[2][9]*SPP[13] + P[11][9]*SPP[22] + P[14][9]*SPP[16];
- nextP[3][9] = P[3][9] + P[0][9]*SPP[1] + P[1][9]*SPP[19] + P[2][9]*SPP[15] - P[15][9]*SPP[21];
- nextP[4][9] = P[4][9] + P[15][9]*SF[22] + P[0][9]*SPP[20] + P[1][9]*SPP[12] + P[2][9]*SPP[11];
- nextP[5][9] = P[5][9] + P[15][9]*SF[20] - P[0][9]*SPP[7] + P[1][9]*SPP[10] + P[2][9]*SPP[0];
- nextP[6][9] = P[6][9] + P[3][9]*dt;
- nextP[7][9] = P[7][9] + P[4][9]*dt;
- nextP[8][9] = P[8][9] + P[5][9]*dt;
- nextP[9][9] = P[9][9];
- nextP[0][10] = P[0][10]*SPP[5] - P[1][10]*SPP[4] + P[2][10]*SPP[8] + P[9][10]*SPP[22] + P[12][10]*SPP[18];
- nextP[1][10] = P[1][10]*SPP[6] - P[0][10]*SPP[2] - P[2][10]*SPP[9] + P[10][10]*SPP[22] + P[13][10]*SPP[17];
- nextP[2][10] = P[0][10]*SPP[14] - P[1][10]*SPP[3] + P[2][10]*SPP[13] + P[11][10]*SPP[22] + P[14][10]*SPP[16];
- nextP[3][10] = P[3][10] + P[0][10]*SPP[1] + P[1][10]*SPP[19] + P[2][10]*SPP[15] - P[15][10]*SPP[21];
- nextP[4][10] = P[4][10] + P[15][10]*SF[22] + P[0][10]*SPP[20] + P[1][10]*SPP[12] + P[2][10]*SPP[11];
- nextP[5][10] = P[5][10] + P[15][10]*SF[20] - P[0][10]*SPP[7] + P[1][10]*SPP[10] + P[2][10]*SPP[0];
- nextP[6][10] = P[6][10] + P[3][10]*dt;
- nextP[7][10] = P[7][10] + P[4][10]*dt;
- nextP[8][10] = P[8][10] + P[5][10]*dt;
- nextP[9][10] = P[9][10];
- nextP[10][10] = P[10][10];
- nextP[0][11] = P[0][11]*SPP[5] - P[1][11]*SPP[4] + P[2][11]*SPP[8] + P[9][11]*SPP[22] + P[12][11]*SPP[18];
- nextP[1][11] = P[1][11]*SPP[6] - P[0][11]*SPP[2] - P[2][11]*SPP[9] + P[10][11]*SPP[22] + P[13][11]*SPP[17];
- nextP[2][11] = P[0][11]*SPP[14] - P[1][11]*SPP[3] + P[2][11]*SPP[13] + P[11][11]*SPP[22] + P[14][11]*SPP[16];
- nextP[3][11] = P[3][11] + P[0][11]*SPP[1] + P[1][11]*SPP[19] + P[2][11]*SPP[15] - P[15][11]*SPP[21];
- nextP[4][11] = P[4][11] + P[15][11]*SF[22] + P[0][11]*SPP[20] + P[1][11]*SPP[12] + P[2][11]*SPP[11];
- nextP[5][11] = P[5][11] + P[15][11]*SF[20] - P[0][11]*SPP[7] + P[1][11]*SPP[10] + P[2][11]*SPP[0];
- nextP[6][11] = P[6][11] + P[3][11]*dt;
- nextP[7][11] = P[7][11] + P[4][11]*dt;
- nextP[8][11] = P[8][11] + P[5][11]*dt;
- nextP[9][11] = P[9][11];
- nextP[10][11] = P[10][11];
- nextP[11][11] = P[11][11];
- nextP[0][12] = P[0][12]*SPP[5] - P[1][12]*SPP[4] + P[2][12]*SPP[8] + P[9][12]*SPP[22] + P[12][12]*SPP[18];
- nextP[1][12] = P[1][12]*SPP[6] - P[0][12]*SPP[2] - P[2][12]*SPP[9] + P[10][12]*SPP[22] + P[13][12]*SPP[17];
- nextP[2][12] = P[0][12]*SPP[14] - P[1][12]*SPP[3] + P[2][12]*SPP[13] + P[11][12]*SPP[22] + P[14][12]*SPP[16];
- nextP[3][12] = P[3][12] + P[0][12]*SPP[1] + P[1][12]*SPP[19] + P[2][12]*SPP[15] - P[15][12]*SPP[21];
- nextP[4][12] = P[4][12] + P[15][12]*SF[22] + P[0][12]*SPP[20] + P[1][12]*SPP[12] + P[2][12]*SPP[11];
- nextP[5][12] = P[5][12] + P[15][12]*SF[20] - P[0][12]*SPP[7] + P[1][12]*SPP[10] + P[2][12]*SPP[0];
- nextP[6][12] = P[6][12] + P[3][12]*dt;
- nextP[7][12] = P[7][12] + P[4][12]*dt;
- nextP[8][12] = P[8][12] + P[5][12]*dt;
- nextP[9][12] = P[9][12];
- nextP[10][12] = P[10][12];
- nextP[11][12] = P[11][12];
- nextP[12][12] = P[12][12];
- nextP[0][13] = P[0][13]*SPP[5] - P[1][13]*SPP[4] + P[2][13]*SPP[8] + P[9][13]*SPP[22] + P[12][13]*SPP[18];
- nextP[1][13] = P[1][13]*SPP[6] - P[0][13]*SPP[2] - P[2][13]*SPP[9] + P[10][13]*SPP[22] + P[13][13]*SPP[17];
- nextP[2][13] = P[0][13]*SPP[14] - P[1][13]*SPP[3] + P[2][13]*SPP[13] + P[11][13]*SPP[22] + P[14][13]*SPP[16];
- nextP[3][13] = P[3][13] + P[0][13]*SPP[1] + P[1][13]*SPP[19] + P[2][13]*SPP[15] - P[15][13]*SPP[21];
- nextP[4][13] = P[4][13] + P[15][13]*SF[22] + P[0][13]*SPP[20] + P[1][13]*SPP[12] + P[2][13]*SPP[11];
- nextP[5][13] = P[5][13] + P[15][13]*SF[20] - P[0][13]*SPP[7] + P[1][13]*SPP[10] + P[2][13]*SPP[0];
- nextP[6][13] = P[6][13] + P[3][13]*dt;
- nextP[7][13] = P[7][13] + P[4][13]*dt;
- nextP[8][13] = P[8][13] + P[5][13]*dt;
- nextP[9][13] = P[9][13];
- nextP[10][13] = P[10][13];
- nextP[11][13] = P[11][13];
- nextP[12][13] = P[12][13];
- nextP[13][13] = P[13][13];
- nextP[0][14] = P[0][14]*SPP[5] - P[1][14]*SPP[4] + P[2][14]*SPP[8] + P[9][14]*SPP[22] + P[12][14]*SPP[18];
- nextP[1][14] = P[1][14]*SPP[6] - P[0][14]*SPP[2] - P[2][14]*SPP[9] + P[10][14]*SPP[22] + P[13][14]*SPP[17];
- nextP[2][14] = P[0][14]*SPP[14] - P[1][14]*SPP[3] + P[2][14]*SPP[13] + P[11][14]*SPP[22] + P[14][14]*SPP[16];
- nextP[3][14] = P[3][14] + P[0][14]*SPP[1] + P[1][14]*SPP[19] + P[2][14]*SPP[15] - P[15][14]*SPP[21];
- nextP[4][14] = P[4][14] + P[15][14]*SF[22] + P[0][14]*SPP[20] + P[1][14]*SPP[12] + P[2][14]*SPP[11];
- nextP[5][14] = P[5][14] + P[15][14]*SF[20] - P[0][14]*SPP[7] + P[1][14]*SPP[10] + P[2][14]*SPP[0];
- nextP[6][14] = P[6][14] + P[3][14]*dt;
- nextP[7][14] = P[7][14] + P[4][14]*dt;
- nextP[8][14] = P[8][14] + P[5][14]*dt;
- nextP[9][14] = P[9][14];
- nextP[10][14] = P[10][14];
- nextP[11][14] = P[11][14];
- nextP[12][14] = P[12][14];
- nextP[13][14] = P[13][14];
- nextP[14][14] = P[14][14];
- nextP[0][15] = P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18];
- nextP[1][15] = P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17];
- nextP[2][15] = P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16];
- nextP[3][15] = P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21];
- nextP[4][15] = P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11];
- nextP[5][15] = P[5][15] + P[15][15]*SF[20] - P[0][15]*SPP[7] + P[1][15]*SPP[10] + P[2][15]*SPP[0];
- nextP[6][15] = P[6][15] + P[3][15]*dt;
- nextP[7][15] = P[7][15] + P[4][15]*dt;
- nextP[8][15] = P[8][15] + P[5][15]*dt;
- nextP[9][15] = P[9][15];
- nextP[10][15] = P[10][15];
- nextP[11][15] = P[11][15];
- nextP[12][15] = P[12][15];
- nextP[13][15] = P[13][15];
- nextP[14][15] = P[14][15];
- nextP[15][15] = P[15][15];
- if (stateIndexLim > 15) {
- nextP[0][16] = P[0][16]*SPP[5] - P[1][16]*SPP[4] + P[2][16]*SPP[8] + P[9][16]*SPP[22] + P[12][16]*SPP[18];
- nextP[1][16] = P[1][16]*SPP[6] - P[0][16]*SPP[2] - P[2][16]*SPP[9] + P[10][16]*SPP[22] + P[13][16]*SPP[17];
- nextP[2][16] = P[0][16]*SPP[14] - P[1][16]*SPP[3] + P[2][16]*SPP[13] + P[11][16]*SPP[22] + P[14][16]*SPP[16];
- nextP[3][16] = P[3][16] + P[0][16]*SPP[1] + P[1][16]*SPP[19] + P[2][16]*SPP[15] - P[15][16]*SPP[21];
- nextP[4][16] = P[4][16] + P[15][16]*SF[22] + P[0][16]*SPP[20] + P[1][16]*SPP[12] + P[2][16]*SPP[11];
- nextP[5][16] = P[5][16] + P[15][16]*SF[20] - P[0][16]*SPP[7] + P[1][16]*SPP[10] + P[2][16]*SPP[0];
- nextP[6][16] = P[6][16] + P[3][16]*dt;
- nextP[7][16] = P[7][16] + P[4][16]*dt;
- nextP[8][16] = P[8][16] + P[5][16]*dt;
- nextP[9][16] = P[9][16];
- nextP[10][16] = P[10][16];
- nextP[11][16] = P[11][16];
- nextP[12][16] = P[12][16];
- nextP[13][16] = P[13][16];
- nextP[14][16] = P[14][16];
- nextP[15][16] = P[15][16];
- nextP[16][16] = P[16][16];
- nextP[0][17] = P[0][17]*SPP[5] - P[1][17]*SPP[4] + P[2][17]*SPP[8] + P[9][17]*SPP[22] + P[12][17]*SPP[18];
- nextP[1][17] = P[1][17]*SPP[6] - P[0][17]*SPP[2] - P[2][17]*SPP[9] + P[10][17]*SPP[22] + P[13][17]*SPP[17];
- nextP[2][17] = P[0][17]*SPP[14] - P[1][17]*SPP[3] + P[2][17]*SPP[13] + P[11][17]*SPP[22] + P[14][17]*SPP[16];
- nextP[3][17] = P[3][17] + P[0][17]*SPP[1] + P[1][17]*SPP[19] + P[2][17]*SPP[15] - P[15][17]*SPP[21];
- nextP[4][17] = P[4][17] + P[15][17]*SF[22] + P[0][17]*SPP[20] + P[1][17]*SPP[12] + P[2][17]*SPP[11];
- nextP[5][17] = P[5][17] + P[15][17]*SF[20] - P[0][17]*SPP[7] + P[1][17]*SPP[10] + P[2][17]*SPP[0];
- nextP[6][17] = P[6][17] + P[3][17]*dt;
- nextP[7][17] = P[7][17] + P[4][17]*dt;
- nextP[8][17] = P[8][17] + P[5][17]*dt;
- nextP[9][17] = P[9][17];
- nextP[10][17] = P[10][17];
- nextP[11][17] = P[11][17];
- nextP[12][17] = P[12][17];
- nextP[13][17] = P[13][17];
- nextP[14][17] = P[14][17];
- nextP[15][17] = P[15][17];
- nextP[16][17] = P[16][17];
- nextP[17][17] = P[17][17];
- nextP[0][18] = P[0][18]*SPP[5] - P[1][18]*SPP[4] + P[2][18]*SPP[8] + P[9][18]*SPP[22] + P[12][18]*SPP[18];
- nextP[1][18] = P[1][18]*SPP[6] - P[0][18]*SPP[2] - P[2][18]*SPP[9] + P[10][18]*SPP[22] + P[13][18]*SPP[17];
- nextP[2][18] = P[0][18]*SPP[14] - P[1][18]*SPP[3] + P[2][18]*SPP[13] + P[11][18]*SPP[22] + P[14][18]*SPP[16];
- nextP[3][18] = P[3][18] + P[0][18]*SPP[1] + P[1][18]*SPP[19] + P[2][18]*SPP[15] - P[15][18]*SPP[21];
- nextP[4][18] = P[4][18] + P[15][18]*SF[22] + P[0][18]*SPP[20] + P[1][18]*SPP[12] + P[2][18]*SPP[11];
- nextP[5][18] = P[5][18] + P[15][18]*SF[20] - P[0][18]*SPP[7] + P[1][18]*SPP[10] + P[2][18]*SPP[0];
- nextP[6][18] = P[6][18] + P[3][18]*dt;
- nextP[7][18] = P[7][18] + P[4][18]*dt;
- nextP[8][18] = P[8][18] + P[5][18]*dt;
- nextP[9][18] = P[9][18];
- nextP[10][18] = P[10][18];
- nextP[11][18] = P[11][18];
- nextP[12][18] = P[12][18];
- nextP[13][18] = P[13][18];
- nextP[14][18] = P[14][18];
- nextP[15][18] = P[15][18];
- nextP[16][18] = P[16][18];
- nextP[17][18] = P[17][18];
- nextP[18][18] = P[18][18];
- nextP[0][19] = P[0][19]*SPP[5] - P[1][19]*SPP[4] + P[2][19]*SPP[8] + P[9][19]*SPP[22] + P[12][19]*SPP[18];
- nextP[1][19] = P[1][19]*SPP[6] - P[0][19]*SPP[2] - P[2][19]*SPP[9] + P[10][19]*SPP[22] + P[13][19]*SPP[17];
- nextP[2][19] = P[0][19]*SPP[14] - P[1][19]*SPP[3] + P[2][19]*SPP[13] + P[11][19]*SPP[22] + P[14][19]*SPP[16];
- nextP[3][19] = P[3][19] + P[0][19]*SPP[1] + P[1][19]*SPP[19] + P[2][19]*SPP[15] - P[15][19]*SPP[21];
- nextP[4][19] = P[4][19] + P[15][19]*SF[22] + P[0][19]*SPP[20] + P[1][19]*SPP[12] + P[2][19]*SPP[11];
- nextP[5][19] = P[5][19] + P[15][19]*SF[20] - P[0][19]*SPP[7] + P[1][19]*SPP[10] + P[2][19]*SPP[0];
- nextP[6][19] = P[6][19] + P[3][19]*dt;
- nextP[7][19] = P[7][19] + P[4][19]*dt;
- nextP[8][19] = P[8][19] + P[5][19]*dt;
- nextP[9][19] = P[9][19];
- nextP[10][19] = P[10][19];
- nextP[11][19] = P[11][19];
- nextP[12][19] = P[12][19];
- nextP[13][19] = P[13][19];
- nextP[14][19] = P[14][19];
- nextP[15][19] = P[15][19];
- nextP[16][19] = P[16][19];
- nextP[17][19] = P[17][19];
- nextP[18][19] = P[18][19];
- nextP[19][19] = P[19][19];
- nextP[0][20] = P[0][20]*SPP[5] - P[1][20]*SPP[4] + P[2][20]*SPP[8] + P[9][20]*SPP[22] + P[12][20]*SPP[18];
- nextP[1][20] = P[1][20]*SPP[6] - P[0][20]*SPP[2] - P[2][20]*SPP[9] + P[10][20]*SPP[22] + P[13][20]*SPP[17];
- nextP[2][20] = P[0][20]*SPP[14] - P[1][20]*SPP[3] + P[2][20]*SPP[13] + P[11][20]*SPP[22] + P[14][20]*SPP[16];
- nextP[3][20] = P[3][20] + P[0][20]*SPP[1] + P[1][20]*SPP[19] + P[2][20]*SPP[15] - P[15][20]*SPP[21];
- nextP[4][20] = P[4][20] + P[15][20]*SF[22] + P[0][20]*SPP[20] + P[1][20]*SPP[12] + P[2][20]*SPP[11];
- nextP[5][20] = P[5][20] + P[15][20]*SF[20] - P[0][20]*SPP[7] + P[1][20]*SPP[10] + P[2][20]*SPP[0];
- nextP[6][20] = P[6][20] + P[3][20]*dt;
- nextP[7][20] = P[7][20] + P[4][20]*dt;
- nextP[8][20] = P[8][20] + P[5][20]*dt;
- nextP[9][20] = P[9][20];
- nextP[10][20] = P[10][20];
- nextP[11][20] = P[11][20];
- nextP[12][20] = P[12][20];
- nextP[13][20] = P[13][20];
- nextP[14][20] = P[14][20];
- nextP[15][20] = P[15][20];
- nextP[16][20] = P[16][20];
- nextP[17][20] = P[17][20];
- nextP[18][20] = P[18][20];
- nextP[19][20] = P[19][20];
- nextP[20][20] = P[20][20];
- nextP[0][21] = P[0][21]*SPP[5] - P[1][21]*SPP[4] + P[2][21]*SPP[8] + P[9][21]*SPP[22] + P[12][21]*SPP[18];
- nextP[1][21] = P[1][21]*SPP[6] - P[0][21]*SPP[2] - P[2][21]*SPP[9] + P[10][21]*SPP[22] + P[13][21]*SPP[17];
- nextP[2][21] = P[0][21]*SPP[14] - P[1][21]*SPP[3] + P[2][21]*SPP[13] + P[11][21]*SPP[22] + P[14][21]*SPP[16];
- nextP[3][21] = P[3][21] + P[0][21]*SPP[1] + P[1][21]*SPP[19] + P[2][21]*SPP[15] - P[15][21]*SPP[21];
- nextP[4][21] = P[4][21] + P[15][21]*SF[22] + P[0][21]*SPP[20] + P[1][21]*SPP[12] + P[2][21]*SPP[11];
- nextP[5][21] = P[5][21] + P[15][21]*SF[20] - P[0][21]*SPP[7] + P[1][21]*SPP[10] + P[2][21]*SPP[0];
- nextP[6][21] = P[6][21] + P[3][21]*dt;
- nextP[7][21] = P[7][21] + P[4][21]*dt;
- nextP[8][21] = P[8][21] + P[5][21]*dt;
- nextP[9][21] = P[9][21];
- nextP[10][21] = P[10][21];
- nextP[11][21] = P[11][21];
- nextP[12][21] = P[12][21];
- nextP[13][21] = P[13][21];
- nextP[14][21] = P[14][21];
- nextP[15][21] = P[15][21];
- nextP[16][21] = P[16][21];
- nextP[17][21] = P[17][21];
- nextP[18][21] = P[18][21];
- nextP[19][21] = P[19][21];
- nextP[20][21] = P[20][21];
- nextP[21][21] = P[21][21];
- if (stateIndexLim > 21) {
- nextP[0][22] = P[0][22]*SPP[5] - P[1][22]*SPP[4] + P[2][22]*SPP[8] + P[9][22]*SPP[22] + P[12][22]*SPP[18];
- nextP[1][22] = P[1][22]*SPP[6] - P[0][22]*SPP[2] - P[2][22]*SPP[9] + P[10][22]*SPP[22] + P[13][22]*SPP[17];
- nextP[2][22] = P[0][22]*SPP[14] - P[1][22]*SPP[3] + P[2][22]*SPP[13] + P[11][22]*SPP[22] + P[14][22]*SPP[16];
- nextP[3][22] = P[3][22] + P[0][22]*SPP[1] + P[1][22]*SPP[19] + P[2][22]*SPP[15] - P[15][22]*SPP[21];
- nextP[4][22] = P[4][22] + P[15][22]*SF[22] + P[0][22]*SPP[20] + P[1][22]*SPP[12] + P[2][22]*SPP[11];
- nextP[5][22] = P[5][22] + P[15][22]*SF[20] - P[0][22]*SPP[7] + P[1][22]*SPP[10] + P[2][22]*SPP[0];
- nextP[6][22] = P[6][22] + P[3][22]*dt;
- nextP[7][22] = P[7][22] + P[4][22]*dt;
- nextP[8][22] = P[8][22] + P[5][22]*dt;
- nextP[9][22] = P[9][22];
- nextP[10][22] = P[10][22];
- nextP[11][22] = P[11][22];
- nextP[12][22] = P[12][22];
- nextP[13][22] = P[13][22];
- nextP[14][22] = P[14][22];
- nextP[15][22] = P[15][22];
- nextP[16][22] = P[16][22];
- nextP[17][22] = P[17][22];
- nextP[18][22] = P[18][22];
- nextP[19][22] = P[19][22];
- nextP[20][22] = P[20][22];
- nextP[21][22] = P[21][22];
- nextP[22][22] = P[22][22];
- nextP[0][23] = P[0][23]*SPP[5] - P[1][23]*SPP[4] + P[2][23]*SPP[8] + P[9][23]*SPP[22] + P[12][23]*SPP[18];
- nextP[1][23] = P[1][23]*SPP[6] - P[0][23]*SPP[2] - P[2][23]*SPP[9] + P[10][23]*SPP[22] + P[13][23]*SPP[17];
- nextP[2][23] = P[0][23]*SPP[14] - P[1][23]*SPP[3] + P[2][23]*SPP[13] + P[11][23]*SPP[22] + P[14][23]*SPP[16];
- nextP[3][23] = P[3][23] + P[0][23]*SPP[1] + P[1][23]*SPP[19] + P[2][23]*SPP[15] - P[15][23]*SPP[21];
- nextP[4][23] = P[4][23] + P[15][23]*SF[22] + P[0][23]*SPP[20] + P[1][23]*SPP[12] + P[2][23]*SPP[11];
- nextP[5][23] = P[5][23] + P[15][23]*SF[20] - P[0][23]*SPP[7] + P[1][23]*SPP[10] + P[2][23]*SPP[0];
- nextP[6][23] = P[6][23] + P[3][23]*dt;
- nextP[7][23] = P[7][23] + P[4][23]*dt;
- nextP[8][23] = P[8][23] + P[5][23]*dt;
- nextP[9][23] = P[9][23];
- nextP[10][23] = P[10][23];
- nextP[11][23] = P[11][23];
- nextP[12][23] = P[12][23];
- nextP[13][23] = P[13][23];
- nextP[14][23] = P[14][23];
- nextP[15][23] = P[15][23];
- nextP[16][23] = P[16][23];
- nextP[17][23] = P[17][23];
- nextP[18][23] = P[18][23];
- nextP[19][23] = P[19][23];
- nextP[20][23] = P[20][23];
- nextP[21][23] = P[21][23];
- nextP[22][23] = P[22][23];
- nextP[23][23] = P[23][23];
- }
- }
- // Copy upper diagonal to lower diagonal taking advantage of symmetry
- for (uint8_t colIndex=0; colIndex<=stateIndexLim; colIndex++)
- {
- for (uint8_t rowIndex=0; rowIndex<colIndex; rowIndex++)
- {
- nextP[colIndex][rowIndex] = nextP[rowIndex][colIndex];
- }
- }
- // add the general state process noise variances
- for (uint8_t i=0; i<=stateIndexLim; i++)
- {
- nextP[i][i] = nextP[i][i] + processNoise[i];
- }
- // if the total position variance exceeds 1e4 (100m), then stop covariance
- // growth by setting the predicted to the previous values
- // This prevent an ill conditioned matrix from occurring for long periods
- // without GPS
- if ((P[6][6] + P[7][7]) > 1e4f)
- {
- for (uint8_t i=6; i<=7; i++)
- {
- for (uint8_t j=0; j<=stateIndexLim; j++)
- {
- nextP[i][j] = P[i][j];
- nextP[j][i] = P[j][i];
- }
- }
- }
- // copy covariances to output
- CopyCovariances();
- // constrain diagonals to prevent ill-conditioning
- ConstrainVariances();
- hal.util->perf_end(_perf_CovariancePrediction);
- }
- // zero specified range of rows in the state covariance matrix
- void NavEKF2_core::zeroRows(Matrix24 &covMat, uint8_t first, uint8_t last)
- {
- uint8_t row;
- for (row=first; row<=last; row++)
- {
- memset(&covMat[row][0], 0, sizeof(covMat[0][0])*24);
- }
- }
- // zero specified range of columns in the state covariance matrix
- void NavEKF2_core::zeroCols(Matrix24 &covMat, uint8_t first, uint8_t last)
- {
- uint8_t row;
- for (row=0; row<=23; row++)
- {
- memset(&covMat[row][first], 0, sizeof(covMat[0][0])*(1+last-first));
- }
- }
- // reset the output data to the current EKF state
- void NavEKF2_core::StoreOutputReset()
- {
- outputDataNew.quat = stateStruct.quat;
- outputDataNew.velocity = stateStruct.velocity;
- outputDataNew.position = stateStruct.position;
- // write current measurement to entire table
- for (uint8_t i=0; i<imu_buffer_length; i++) {
- storedOutput[i] = outputDataNew;
- }
- outputDataDelayed = outputDataNew;
- // reset the states for the complementary filter used to provide a vertical position dervative output
- posDown = stateStruct.position.z;
- posDownDerivative = stateStruct.velocity.z;
- }
- // Reset the stored output quaternion history to current EKF state
- void NavEKF2_core::StoreQuatReset()
- {
- outputDataNew.quat = stateStruct.quat;
- // write current measurement to entire table
- for (uint8_t i=0; i<imu_buffer_length; i++) {
- storedOutput[i].quat = outputDataNew.quat;
- }
- outputDataDelayed.quat = outputDataNew.quat;
- }
- // Rotate the stored output quaternion history through a quaternion rotation
- void NavEKF2_core::StoreQuatRotate(const Quaternion &deltaQuat)
- {
- outputDataNew.quat = outputDataNew.quat*deltaQuat;
- // write current measurement to entire table
- for (uint8_t i=0; i<imu_buffer_length; i++) {
- storedOutput[i].quat = storedOutput[i].quat*deltaQuat;
- }
- outputDataDelayed.quat = outputDataDelayed.quat*deltaQuat;
- }
- // calculate nav to body quaternions from body to nav rotation matrix
- void NavEKF2_core::quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const
- {
- // Calculate the body to nav cosine matrix
- quat.rotation_matrix(Tbn);
- }
- // force symmetry on the covariance matrix to prevent ill-conditioning
- void NavEKF2_core::ForceSymmetry()
- {
- for (uint8_t i=1; i<=stateIndexLim; i++)
- {
- for (uint8_t j=0; j<=i-1; j++)
- {
- float temp = 0.5f*(P[i][j] + P[j][i]);
- P[i][j] = temp;
- P[j][i] = temp;
- }
- }
- }
- // copy covariances across from covariance prediction calculation
- void NavEKF2_core::CopyCovariances()
- {
- // copy predicted covariances
- for (uint8_t i=0; i<=stateIndexLim; i++) {
- for (uint8_t j=0; j<=stateIndexLim; j++)
- {
- P[i][j] = nextP[i][j];
- }
- }
- }
- // constrain variances (diagonal terms) in the state covariance matrix to prevent ill-conditioning
- void NavEKF2_core::ConstrainVariances()
- {
- for (uint8_t i=0; i<=2; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0f); // attitude error
- for (uint8_t i=3; i<=5; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e3f); // velocities
- for (uint8_t i=6; i<=7; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e6f);
- P[8][8] = constrain_float(P[8][8],0.0f,1.0e6f); // vertical position
- for (uint8_t i=9; i<=11; i++) P[i][i] = constrain_float(P[i][i],0.0f,sq(0.175f * dtEkfAvg)); // delta angle biases
- if (PV_AidingMode != AID_NONE) {
- for (uint8_t i=12; i<=14; i++) P[i][i] = constrain_float(P[i][i],0.0f,0.01f); // delta angle scale factors
- } else {
- // we can't reliably estimate scale factors when there is no aiding data due to transient manoeuvre induced innovations
- // so inhibit estimation by keeping covariance elements at zero
- zeroRows(P,12,14);
- zeroCols(P,12,14);
- }
- P[15][15] = constrain_float(P[15][15],0.0f,sq(10.0f * dtEkfAvg)); // delta velocity bias
- for (uint8_t i=16; i<=18; i++) P[i][i] = constrain_float(P[i][i],0.0f,0.01f); // earth magnetic field
- for (uint8_t i=19; i<=21; i++) P[i][i] = constrain_float(P[i][i],0.0f,0.01f); // body magnetic field
- for (uint8_t i=22; i<=23; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e3f); // wind velocity
- }
- // constrain states using WMM tables and specified limit
- void NavEKF2_core::MagTableConstrain(void)
- {
- // constrain to error from table earth field
- float limit_ga = frontend->_mag_ef_limit * 0.001f;
- stateStruct.earth_magfield.x = constrain_float(stateStruct.earth_magfield.x,
- table_earth_field_ga.x-limit_ga,
- table_earth_field_ga.x+limit_ga);
- stateStruct.earth_magfield.y = constrain_float(stateStruct.earth_magfield.y,
- table_earth_field_ga.y-limit_ga,
- table_earth_field_ga.y+limit_ga);
- stateStruct.earth_magfield.z = constrain_float(stateStruct.earth_magfield.z,
- table_earth_field_ga.z-limit_ga,
- table_earth_field_ga.z+limit_ga);
- }
- // constrain states to prevent ill-conditioning
- void NavEKF2_core::ConstrainStates()
- {
- // attitude errors are limited between +-1
- for (uint8_t i=0; i<=2; i++) statesArray[i] = constrain_float(statesArray[i],-1.0f,1.0f);
- // velocity limit 500 m/sec (could set this based on some multiple of max airspeed * EAS2TAS)
- for (uint8_t i=3; i<=5; i++) statesArray[i] = constrain_float(statesArray[i],-5.0e2f,5.0e2f);
- // position limit 1000 km - TODO apply circular limit
- for (uint8_t i=6; i<=7; i++) statesArray[i] = constrain_float(statesArray[i],-1.0e6f,1.0e6f);
- // height limit covers home alt on everest through to home alt at SL and ballon drop
- stateStruct.position.z = constrain_float(stateStruct.position.z,-4.0e4f,1.0e4f);
- // gyro bias limit (this needs to be set based on manufacturers specs)
- for (uint8_t i=9; i<=11; i++) statesArray[i] = constrain_float(statesArray[i],-GYRO_BIAS_LIMIT*dtEkfAvg,GYRO_BIAS_LIMIT*dtEkfAvg);
- // gyro scale factor limit of +-5% (this needs to be set based on manufacturers specs)
- for (uint8_t i=12; i<=14; i++) statesArray[i] = constrain_float(statesArray[i],0.95f,1.05f);
- // Z accel bias limit 1.0 m/s^2 (this needs to be finalised from test data)
- stateStruct.accel_zbias = constrain_float(stateStruct.accel_zbias,-1.0f*dtEkfAvg,1.0f*dtEkfAvg);
- // earth magnetic field limit
- if (frontend->_mag_ef_limit <= 0 || !have_table_earth_field) {
- // constrain to +/-1Ga
- for (uint8_t i=16; i<=18; i++) statesArray[i] = constrain_float(statesArray[i],-1.0f,1.0f);
- } else {
- // use table constrain
- MagTableConstrain();
- }
- // body magnetic field limit
- for (uint8_t i=19; i<=21; i++) statesArray[i] = constrain_float(statesArray[i],-0.5f,0.5f);
- // wind velocity limit 100 m/s (could be based on some multiple of max airspeed * EAS2TAS) - TODO apply circular limit
- for (uint8_t i=22; i<=23; i++) statesArray[i] = constrain_float(statesArray[i],-100.0f,100.0f);
- // constrain the terrain state to be below the vehicle height unless we are using terrain as the height datum
- if (!inhibitGndState) {
- terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
- }
- }
- // calculate the NED earth spin vector in rad/sec
- void NavEKF2_core::calcEarthRateNED(Vector3f &omega, int32_t latitude) const
- {
- float lat_rad = radians(latitude*1.0e-7f);
- omega.x = earthRate*cosf(lat_rad);
- omega.y = 0;
- omega.z = -earthRate*sinf(lat_rad);
- }
- // initialise the earth magnetic field states using declination, suppled roll/pitch
- // and magnetometer measurements and return initial attitude quaternion
- Quaternion NavEKF2_core::calcQuatAndFieldStates(float roll, float pitch)
- {
- // declare local variables required to calculate initial orientation and magnetic field
- float yaw;
- Matrix3f Tbn;
- Vector3f initMagNED;
- Quaternion initQuat;
- if (use_compass()) {
- // calculate rotation matrix from body to NED frame
- Tbn.from_euler(roll, pitch, 0.0f);
- // read the magnetometer data
- readMagData();
- // rotate the magnetic field into NED axes
- initMagNED = Tbn * magDataDelayed.mag;
- // calculate heading of mag field rel to body heading
- float magHeading = atan2f(initMagNED.y, initMagNED.x);
- // get the magnetic declination
- float magDecAng = MagDeclination();
- // calculate yaw angle rel to true north
- yaw = magDecAng - magHeading;
- // calculate initial filter quaternion states using yaw from magnetometer
- // store the yaw change so that it can be retrieved externally for use by the control loops to prevent yaw disturbances following a reset
- Vector3f tempEuler;
- stateStruct.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z);
- // this check ensures we accumulate the resets that occur within a single iteration of the EKF
- if (imuSampleTime_ms != lastYawReset_ms) {
- yawResetAngle = 0.0f;
- }
- yawResetAngle += wrap_PI(yaw - tempEuler.z);
- lastYawReset_ms = imuSampleTime_ms;
- // calculate an initial quaternion using the new yaw value
- initQuat.from_euler(roll, pitch, yaw);
- // zero the attitude covariances because the corelations will now be invalid
- zeroAttCovOnly();
- // calculate initial Tbn matrix and rotate Mag measurements into NED
- // to set initial NED magnetic field states
- // don't do this if the earth field has already been learned
- if (!magFieldLearned) {
- initQuat.rotation_matrix(Tbn);
- if (have_table_earth_field && frontend->_mag_ef_limit > 0) {
- stateStruct.earth_magfield = table_earth_field_ga;
- } else {
- stateStruct.earth_magfield = Tbn * magDataDelayed.mag;
- }
- // set the NE earth magnetic field states using the published declination
- // and set the corresponding variances and covariances
- alignMagStateDeclination();
- // set the remaining variances and covariances
- zeroRows(P,18,21);
- zeroCols(P,18,21);
- P[18][18] = sq(frontend->_magNoise);
- P[19][19] = P[18][18];
- P[20][20] = P[18][18];
- P[21][21] = P[18][18];
- }
- // record the fact we have initialised the magnetic field states
- recordMagReset();
- // clear mag state reset request
- magStateResetRequest = false;
- } else {
- // this function should not be called if there is no compass data but if is is, return the
- // current attitude
- initQuat = stateStruct.quat;
- }
- // return attitude quaternion
- return initQuat;
- }
- // zero the attitude covariances, but preserve the variances
- void NavEKF2_core::zeroAttCovOnly()
- {
- float varTemp[3];
- for (uint8_t index=0; index<=2; index++) {
- varTemp[index] = P[index][index];
- }
- zeroCols(P,0,2);
- zeroRows(P,0,2);
- for (uint8_t index=0; index<=2; index++) {
- P[index][index] = varTemp[index];
- }
- }
|