123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334 |
- #!/usr/bin/python
- from math import *
- from pymavlink.rotmat import Vector3, Matrix3
- from numpy import linspace
- from visual import *
- class Quat:
- def __init__(self,w=1.0,x=0.0,y=0.0,z=0.0):
- self.w = w
- self.x = x
- self.y = y
- self.z = z
- def to_euler(self):
- roll = (atan2(2.0*(self.w*self.x + self.y*self.z), 1 - 2.0*(self.x*self.x + self.y*self.y)))
- pitch = asin(2.0*(self.w*self.y - self.z*self.x))
- yaw = atan2(2.0*(self.w*self.z + self.x*self.y), 1 - 2.0*(self.y*self.y + self.z*self.z))
- return Vector3(roll,pitch,yaw)
- def from_euler(self,euler):
- #(roll,pitch,yaw)
- cr2 = cos(euler[0]*0.5)
- cp2 = cos(euler[1]*0.5)
- cy2 = cos(euler[2]*0.5)
- sr2 = sin(euler[0]*0.5)
- sp2 = sin(euler[1]*0.5)
- sy2 = sin(euler[2]*0.5)
- self.w = cr2*cp2*cy2 + sr2*sp2*sy2
- self.x = sr2*cp2*cy2 - cr2*sp2*sy2
- self.y = cr2*sp2*cy2 + sr2*cp2*sy2
- self.z = cr2*cp2*sy2 - sr2*sp2*cy2
- return self
- def from_axis_angle(self, vec):
- theta = vec.length()
- if theta == 0:
- self.w = 1.0
- self.x = 0.0
- self.y = 0.0
- self.z = 0.0
- return
- vec_normalized = vec.normalized()
- st2 = sin(theta/2.0)
- self.w = cos(theta/2.0)
- self.x = vec_normalized.x * st2
- self.y = vec_normalized.y * st2
- self.z = vec_normalized.z * st2
- def rotate(self, vec):
- r = Quat()
- r.from_axis_angle(vec)
- q = self * r
- self.w = q.w
- self.x = q.x
- self.y = q.y
- self.z = q.z
- def to_axis_angle(self):
- l = sqrt(self.x**2+self.y**2+self.z**2)
- (x,y,z) = (self.x,self.y,self.z)
- if l != 0:
- temp = 2.0*atan2(l,self.w)
- if temp > pi:
- temp -= 2*pi
- elif temp < -pi:
- temp += 2*pi
- (x,y,z) = (temp*x/l,temp*y/l,temp*z/l)
- return Vector3(x,y,z)
- def to_rotation_matrix(self):
- m = Matrix3()
- yy = self.y**2
- yz = self.y * self.z
- xx = self.x**2
- xy = self.x * self.y
- xz = self.x * self.z
- wx = self.w * self.x
- wy = self.w * self.y
- wz = self.w * self.z
- zz = self.z**2
- m.a.x = 1.0-2.0*(yy + zz)
- m.a.y = 2.0*(xy - wz)
- m.a.z = 2.0*(xz + wy)
- m.b.x = 2.0*(xy + wz)
- m.b.y = 1.0-2.0*(xx + zz)
- m.b.z = 2.0*(yz - wx)
- m.c.x = 2.0*(xz - wy)
- m.c.y = 2.0*(yz + wx)
- m.c.z = 1.0-2.0*(xx + yy)
- return m
- def inverse(self):
- return Quat(self.w,-self.x,-self.y,-self.z)
- def __mul__(self,operand):
- ret = Quat()
- w1=self.w
- x1=self.x
- y1=self.y
- z1=self.z
- w2=operand.w
- x2=operand.x
- y2=operand.y
- z2=operand.z
- ret.w = w1*w2 - x1*x2 - y1*y2 - z1*z2
- ret.x = w1*x2 + x1*w2 + y1*z2 - z1*y2
- ret.y = w1*y2 - x1*z2 + y1*w2 + z1*x2
- ret.z = w1*z2 + x1*y2 - y1*x2 + z1*w2
- return ret
- def __str__(self):
- return "Quat(%f, %f, %f, %f)" % (self.w,self.x,self.y,self.z)
- def vpy_vec(vec):
- return vector(vec.y, -vec.z, -vec.x)
- def update_arrows(q,x,y,z):
- m = q.to_rotation_matrix().transposed()
- x.axis = vpy_vec(m*Vector3(1,0,0))
- x.up = vpy_vec(m*Vector3(0,1,0))
- y.axis = vpy_vec(m*Vector3(0,1,0))
- y.up = vpy_vec(m*Vector3(1,0,0))
- z.axis = vpy_vec(m*Vector3(0,0,1))
- z.up = vpy_vec(m*Vector3(1,0,0))
- class Attitude:
- def __init__(self,reference=False):
- self.labels = []
- self.xarrows = []
- self.yarrows = []
- self.zarrows = []
- self.q = Quat()
- self.reference = reference
- self.update_arrows()
- def add_arrows(self, arrowpos = Vector3(0,0,0), labeltext=None):
- if labeltext is not None:
- self.labels.append(label(pos = vpy_vec(arrowpos), text=labeltext))
- sw = .005 if self.reference else .05
- self.xarrows.append(arrow(pos=vpy_vec(arrowpos),color=color.red,opacity=1,shaftwidth=sw))
- self.yarrows.append(arrow(pos=vpy_vec(arrowpos),color=color.green,opacity=1,shaftwidth=sw))
- self.zarrows.append(arrow(pos=vpy_vec(arrowpos),color=color.blue,opacity=1,shaftwidth=sw))
- self.update_arrows()
- def rotate(self, vec):
- self.q.rotate(vec)
- def update_arrows(self):
- m = self.q.to_rotation_matrix().transposed()
- sl = 1.1 if self.reference else 1.0
- for i in self.xarrows:
- i.axis = vpy_vec(m*Vector3(sl,0,0))
- i.up = vpy_vec(m*Vector3(0,1,0))
- for i in self.yarrows:
- i.axis = vpy_vec(m*Vector3(0,sl,0))
- i.up = vpy_vec(m*Vector3(1,0,0))
- for i in self.zarrows:
- i.axis = vpy_vec(m*Vector3(0,0,sl))
- i.up = vpy_vec(m*Vector3(1,0,0))
- for i in self.labels:
- i.xoffset = scene.width*0.07
- i.yoffset = scene.width*0.1
- class Tian_integrator:
- def __init__(self, integrate_separately=True):
- self.alpha = Vector3(0,0,0)
- self.beta = Vector3(0,0,0)
- self.last_alpha = Vector3(0,0,0)
- self.last_delta_alpha = Vector3(0,0,0)
- self.last_sample = Vector3(0,0,0)
- self.integrate_separately = integrate_separately
- def add_sample(self, sample, dt):
- delta_alpha = (self.last_sample+sample)*0.5*dt
- self.alpha += delta_alpha
- delta_beta = 0.5 * (self.last_alpha + (1.0/6.0)*self.last_delta_alpha)%delta_alpha
- if self.integrate_separately:
- self.beta += delta_beta
- else:
- self.alpha += delta_beta
- self.last_alpha = self.alpha
- self.last_delta_alpha = delta_alpha
- self.last_sample = sample
- def pop_delta_angles(self):
- ret = self.alpha + self.beta
- self.alpha.zero()
- self.beta.zero()
- return ret
- filter2p_1khz_30hz_data = {}
- def filter2p_1khz_30hz(sample, key):
- global filter2p_1khz_30hz_data
- if not key in filter2p_1khz_30hz_data:
- filter2p_1khz_30hz_data[key] = (0.0,0.0)
- (delay_element_1, delay_element_2) = filter2p_1khz_30hz_data[key]
- sample_freq = 1000
- cutoff_freq = 30
- fr = sample_freq // cutoff_freq
- ohm = tan(pi/fr)
- c = 1.0+2.0*cos(pi/4.0)*ohm + ohm**2
- b0 = ohm**2/c
- b1 = 2.0*b0
- b2 = b0
- a1 = 2.0*(ohm**2-1.0)/c
- a2 = (1.0-2.0*cos(pi/4.0)*ohm+ohm**2)/c
- delay_element_0 = sample - delay_element_1 * a1 - delay_element_2 * a2
- output = delay_element_0 * b0 + delay_element_1 * b1 + delay_element_2 * b2
- filter2p_1khz_30hz_data[key] = (delay_element_0, delay_element_1)
- return output
- def filter2p_1khz_30hz_vector3(sample, key):
- ret = Vector3()
- ret.x = filter2p_1khz_30hz(sample.x, "vec3f"+key+"x")
- ret.y = filter2p_1khz_30hz(sample.y, "vec3f"+key+"y")
- ret.z = filter2p_1khz_30hz(sample.z, "vec3f"+key+"z")
- return ret
- reference_attitude = Attitude(True)
- uncorrected_attitude_low = Attitude()
- uncorrected_attitude_high = Attitude()
- corrected_attitude = Attitude()
- corrected_attitude_combined = Attitude()
- corrected_attitude_integrator = Tian_integrator()
- corrected_attitude_integrator_combined = Tian_integrator(integrate_separately = False)
- reference_attitude.add_arrows(Vector3(0,-3,0))
- uncorrected_attitude_low.add_arrows(Vector3(0,-3,0), "no correction\nlow rate integration\n30hz software LPF @ 1khz\n(ardupilot 2015-02-18)")
- reference_attitude.add_arrows(Vector3(0,-1,0))
- uncorrected_attitude_high.add_arrows(Vector3(0,-1,0), "no correction\nhigh rate integration")
- reference_attitude.add_arrows(Vector3(0,1,0))
- corrected_attitude.add_arrows(Vector3(0,1,0), "Tian et al\nseparate integration")
- reference_attitude.add_arrows(Vector3(0,3,0))
- corrected_attitude_combined.add_arrows(Vector3(0,3,0), "Tian et al\ncombined_integration\n(proposed patch)")
- #scene.scale = (0.3,0.3,0.3)
- scene.fov = 0.001
- scene.forward = (-0.5, -0.5, -1)
- coning_frequency_hz = 50
- coning_magnitude_rad_s = 2
- label_text = (
- "coning motion frequency %f hz\n"
- "coning motion peak amplitude %f deg/s\n"
- "thin arrows are reference attitude"
- ) % (coning_frequency_hz, degrees(coning_magnitude_rad_s))
- label(pos = vpy_vec(Vector3(0,0,2)), text=label_text)
- t = 0.0
- dt_10000 = 0.0001
- dt_1000 = 0.001
- dt_333 = 0.003
- accumulated_delta_angle = Vector3(0,0,0)
- last_gyro_10000 = Vector3(0,0,0)
- last_gyro_1000 = Vector3(0,0,0)
- last_filtered_gyro_333 = Vector3(0,0,0)
- filtered_gyro = Vector3(0,0,0)
- while True:
- rate(66)
- for i in range(5):
- for j in range(3):
- for k in range(10):
- #vvvvvvvvvv 10 kHz vvvvvvvvvv#
- #compute angular rate at current time
- gyro = Vector3(sin(t*coning_frequency_hz*2*pi), cos(t*coning_frequency_hz*2*pi),0)*coning_magnitude_rad_s
- #integrate reference attitude
- reference_attitude.rotate((gyro+last_gyro_10000) * dt_10000 * 0.5)
- #increment time
- t += dt_10000
- last_gyro_10000 = gyro
- #vvvvvvvvvv 1 kHz vvvvvvvvvv#
- #update filter for sim 1
- filtered_gyro = filter2p_1khz_30hz_vector3(gyro, "1")
- #update integrator for sim 2
- accumulated_delta_angle += (gyro+last_gyro_1000) * dt_1000 * 0.5
- #update integrator for sim 3
- corrected_attitude_integrator.add_sample(gyro, dt_1000)
- #update integrator for sim 4
- corrected_attitude_integrator_combined.add_sample(gyro, dt_1000)
- last_gyro_1000 = gyro
- #vvvvvvvvvv 333 Hz vvvvvvvvvv#
- #update sim 1 (leftmost)
- uncorrected_attitude_low.rotate((filtered_gyro+last_filtered_gyro_333) * dt_333 * 0.5)
- #update sim 2
- uncorrected_attitude_high.rotate(accumulated_delta_angle)
- accumulated_delta_angle.zero()
- #update sim 3
- corrected_attitude.rotate(corrected_attitude_integrator.pop_delta_angles())
- #update sim 4 (rightmost)
- corrected_attitude_combined.rotate(corrected_attitude_integrator_combined.pop_delta_angles())
- last_filtered_gyro_333 = filtered_gyro
- #vvvvvvvvvv 66 Hz vvvvvvvvvv#
- reference_attitude.update_arrows()
- corrected_attitude.update_arrows()
- corrected_attitude_combined.update_arrows()
- uncorrected_attitude_low.update_arrows()
- uncorrected_attitude_high.update_arrows()
|