#!/usr/bin/env python ''' fit best estimate of magnetometer offsets using the algorithm from Bill Premerlani ''' from __future__ import print_function from builtins import range import sys # command line option handling from argparse import ArgumentParser parser = ArgumentParser(description=__doc__) parser.add_argument("--no-timestamps", dest="notimestamps", action='store_true', help="Log doesn't have timestamps") parser.add_argument("--condition", default=None, help="select packets by condition") parser.add_argument("--verbose", action='store_true', default=False, help="verbose offset output") parser.add_argument("--gain", type=float, default=0.01, help="algorithm gain") parser.add_argument("--noise", type=float, default=0, help="noise to add") parser.add_argument("--max-change", type=float, default=10, help="max step change") parser.add_argument("--min-diff", type=float, default=50, help="min mag vector delta") parser.add_argument("--history", type=int, default=20, help="how many points to keep") parser.add_argument("--repeat", type=int, default=1, help="number of repeats through the data") parser.add_argument("logs", metavar="LOG", nargs="+") args = parser.parse_args() from pymavlink import mavutil from pymavlink.rotmat import Vector3 def noise(): '''a noise vector''' from random import gauss v = Vector3(gauss(0, 1), gauss(0, 1), gauss(0, 1)) v.normalize() return v * args.noise def find_offsets(data, ofs): '''find mag offsets by applying Bills "offsets revisited" algorithm on the data This is an implementation of the algorithm from: http://gentlenav.googlecode.com/files/MagnetometerOffsetNullingRevisited.pdf ''' # a limit on the maximum change in each step max_change = args.max_change # the gain factor for the algorithm gain = args.gain data2 = [] for d in data: d = d.copy() + noise() d.x = float(int(d.x + 0.5)) d.y = float(int(d.y + 0.5)) d.z = float(int(d.z + 0.5)) data2.append(d) data = data2 history_idx = 0 mag_history = data[0:args.history] for i in range(args.history, len(data)): B1 = mag_history[history_idx] + ofs B2 = data[i] + ofs diff = B2 - B1 diff_length = diff.length() if diff_length <= args.min_diff: # the mag vector hasn't changed enough - we don't get any # information from this history_idx = (history_idx+1) % args.history continue mag_history[history_idx] = data[i] history_idx = (history_idx+1) % args.history # equation 6 of Bills paper delta = diff * (gain * (B2.length() - B1.length()) / diff_length) # limit the change from any one reading. This is to prevent # single crazy readings from throwing off the offsets for a long # time delta_length = delta.length() if max_change != 0 and delta_length > max_change: delta *= max_change / delta_length # set the new offsets ofs = ofs - delta if args.verbose: print(ofs) return ofs def magfit(logfile): '''find best magnetometer offset fit to a log file''' print("Processing log %s" % filename) # open the log file mlog = mavutil.mavlink_connection(filename, notimestamps=args.notimestamps) data = [] mag = None offsets = Vector3(0,0,0) # now gather all the data while True: # get the next MAVLink message in the log m = mlog.recv_match(condition=args.condition) if m is None: break if m.get_type() == "SENSOR_OFFSETS": # update offsets that were used during this flight offsets = Vector3(m.mag_ofs_x, m.mag_ofs_y, m.mag_ofs_z) if m.get_type() == "RAW_IMU" and offsets is not None: # extract one mag vector, removing the offsets that were # used during that flight to get the raw sensor values mag = Vector3(m.xmag, m.ymag, m.zmag) - offsets data.append(mag) print("Extracted %u data points" % len(data)) print("Current offsets: %s" % offsets) # run the fitting algorithm ofs = offsets ofs = Vector3(0,0,0) for r in range(args.repeat): ofs = find_offsets(data, ofs) print('Loop %u offsets %s' % (r, ofs)) sys.stdout.flush() print("New offsets: %s" % ofs) total = 0.0 for filename in args.logs: magfit(filename)