/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Copyright 2010 Michael Smith, all rights reserved. // Derived closely from: /**************************************** * 3D Vector Classes * By Bill Perone (billperone@yahoo.com) * Original: 9-16-2002 * Revised: 19-11-2003 * 11-12-2003 * 18-12-2003 * 06-06-2004 * * Copyright 2003, This code is provided "as is" and you can use it freely as long as * credit is given to Bill Perone in the application it is used in * * Notes: * if a*b = 0 then a & b are orthogonal * a%b = -b%a * a*(b%c) = (a%b)*c * a%b = a(cast to matrix)*b * (a%b).length() = area of parallelogram formed by a & b * (a%b).length() = a.length()*b.length() * sin(angle between a & b) * (a%b).length() = 0 if angle between a & b = 0 or a.length() = 0 or b.length() = 0 * a * (b%c) = volume of parallelpiped formed by a, b, c * vector triple product: a%(b%c) = b*(a*c) - c*(a*b) * scalar triple product: a*(b%c) = c*(a%b) = b*(c%a) * vector quadruple product: (a%b)*(c%d) = (a*c)*(b*d) - (a*d)*(b*c) * if a is unit vector along b then a%b = -b%a = -b(cast to matrix)*a = 0 * vectors a1...an are linearly dependent if there exists a vector of scalars (b) where a1*b1 + ... + an*bn = 0 * or if the matrix (A) * b = 0 * ****************************************/ #pragma once #include #include #include #if MATH_CHECK_INDEXES #include #endif #include "rotations.h" template class Matrix4; template class Vector4 { public: T M0, M1, M2, M3; // trivial ctor constexpr Vector4() : M0(0) , M1(0) , M2(0) , M3(0){} // setting ctor constexpr Vector4(const T x0, const T x1, const T x2,const T x3) : M0(x0) , M1(x1) , M2(x2) , M3(x3){} // function call operator void operator ()(const T x0, const T x1, const T x2,const T x3) { M0= x0; M1= x1; M2= x2;M3= x3; } // gets the length of this vector float length(void) const; // dot product T operator *(const Vector4 &v) const; // uniform scaling Vector4 operator *(const T num) const; // uniform scaling Vector4 &operator *=(const T num); // uniform scaling Vector4 &operator /=(const T num); // uniform scaling Vector4 operator /(const T num) const; // subtraction Vector4 &operator -=(const Vector4 &v); // subtraction Vector4 operator -(const Vector4 &v) const; // negation Vector4 operator -(void) const; // addition Vector4 &operator +=(const Vector4 &v); // addition Vector4 operator +(const Vector4 &v) const; // test for equality bool operator ==(const Vector4 &v) const; // test for inequality bool operator !=(const Vector4 &v) const; // non-uniform scaling Vector4 &operator *=(const Vector4 &v) { M0 *= v.M0; M1 *= v.M1; M2 *= v.M2;M3 *= v.M3; return *this; } // check if any elements are NAN bool is_nan(void) const WARN_IF_UNUSED; // check if any elements are infinity bool is_inf(void) const WARN_IF_UNUSED; // check if all elements are zero bool is_zero(void) const WARN_IF_UNUSED { return (fabsf(M0) < FLT_EPSILON) && (fabsf(M1) < FLT_EPSILON) && (fabsf(M2) < FLT_EPSILON) && (fabsf(M3) < FLT_EPSILON); } // gets the length of this vector squared T length_squared() const { return (T)(*this * *this); } // normalizes this vector void normalize() { *this /= length(); } // zero the vector void zero() { M0 = M1 = M2 = M3 = 0; } // returns the normalized version of this vector Vector4 normalized() const { return *this/length(); } }; typedef Vector4 Vector4i; typedef Vector4 Vector4ui; typedef Vector4 Vector4l; typedef Vector4 Vector4ul; typedef Vector4 Vector4f;