/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
driver for Cheerson CX-OF optical flow sensor
CXOF serial packet description
byte0: header (0xFE)
byte1: reserved
byte2: x-motion low byte;
byte3: x-motion high byte;
byte4: y-motion low byte;
byte5: y-motion high byte;
byte6: t-motion
byte7: surface quality
byte8: footer (0xAA)
sensor sends packets at 25hz
*/
#include
#include "AP_OpticalFlow_CXOF.h"
#include
#include
#include
#include
#include "OpticalFlow.h"
#include
#define CXOF_HEADER (uint8_t)0xFE
#define CXOF_FOOTER (uint8_t)0xAA
#define CXOF_FRAME_LENGTH 9
#define CXOF_PIXEL_SCALING (1.76e-3)
#define CXOF_TIMEOUT_SEC 0.3f
extern const AP_HAL::HAL& hal;
// constructor
AP_OpticalFlow_CXOF::AP_OpticalFlow_CXOF(OpticalFlow &_frontend, AP_HAL::UARTDriver *_uart) :
OpticalFlow_backend(_frontend),
uart(_uart)
{
}
// detect the device
AP_OpticalFlow_CXOF *AP_OpticalFlow_CXOF::detect(OpticalFlow &_frontend)
{
AP_SerialManager *serial_manager = AP::serialmanager().get_singleton();
if (serial_manager == nullptr) {
return nullptr;
}
// look for first serial driver with protocol defined as OpticalFlow
// this is the only optical flow sensor which uses the serial protocol
AP_HAL::UARTDriver *uart = serial_manager->find_serial(AP_SerialManager::SerialProtocol_OpticalFlow, 0);
if (uart == nullptr) {
return nullptr;
}
// we have found a serial port so use it
AP_OpticalFlow_CXOF *sensor = new AP_OpticalFlow_CXOF(_frontend, uart);
return sensor;
}
// initialise the sensor
void AP_OpticalFlow_CXOF::init()
{
// sanity check uart
if (uart == nullptr) {
return;
}
// open serial port with baud rate of 19200
uart->begin(19200);
last_frame_us = AP_HAL::micros();
}
// read latest values from sensor and fill in x,y and totals.
void AP_OpticalFlow_CXOF::update(void)
{
// sanity check uart
if (uart == nullptr) {
return;
}
// record gyro values as long as they are being used
// the sanity check of dt below ensures old gyro values are not used
if (gyro_sum_count < 1000) {
const Vector3f& gyro = AP::ahrs_navekf().get_gyro();
gyro_sum.x += gyro.x;
gyro_sum.y += gyro.y;
gyro_sum_count++;
}
// sensor values
int32_t x_sum = 0;
int32_t y_sum = 0;
uint16_t qual_sum = 0;
uint16_t count = 0;
// read any available characters in the serial buffer
int16_t nbytes = uart->available();
while (nbytes-- > 0) {
int16_t r = uart->read();
if (r < 0) {
continue;
}
uint8_t c = (uint8_t)r;
// if buffer is empty and this byte is header, add to buffer
if (buf_len == 0) {
if (c == CXOF_HEADER) {
buf[buf_len++] = c;
}
} else {
// add character to buffer
buf[buf_len++] = c;
// if buffer has 9 items try to decode it
if (buf_len >= CXOF_FRAME_LENGTH) {
// check last character matches footer
if (buf[buf_len-1] != CXOF_FOOTER) {
buf_len = 0;
continue;
}
// decode package
int16_t x_raw = (int16_t)((uint16_t)buf[3] << 8) | buf[2];
int16_t y_raw = (int16_t)((uint16_t)buf[5] << 8) | buf[4];
// add to sum of all readings from sensor this iteration
count++;
x_sum += x_raw;
y_sum += y_raw;
qual_sum += buf[7];
// clear buffer
buf_len = 0;
}
}
}
// return without updating state if no readings
if (count == 0) {
return;
}
struct OpticalFlow::OpticalFlow_state state {};
// average surface quality scaled to be between 0 and 255
state.surface_quality = (constrain_int16(qual_sum / count, 64, 78) - 64) * 255 / 14;
// calculate dt
uint64_t this_frame_us = uart->receive_time_constraint_us(CXOF_FRAME_LENGTH);
if (this_frame_us == 0) {
// for HAL that cannot estimate arrival time in serial buffer use current time
this_frame_us = AP_HAL::micros();
}
float dt = (this_frame_us - last_frame_us) * 1.0e-6;
last_frame_us = this_frame_us;
// sanity check dt
if (is_positive(dt) && (dt < CXOF_TIMEOUT_SEC)) {
// calculate flow values
const Vector2f flowScaler = _flowScaler();
float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x;
float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y;
// copy flow rates to state structure
state.flowRate = Vector2f(((float)x_sum / count) * flowScaleFactorX,
((float)y_sum / count) * flowScaleFactorY);
state.flowRate *= CXOF_PIXEL_SCALING / dt;
// copy average body rate to state structure
state.bodyRate = Vector2f(gyro_sum.x / gyro_sum_count, gyro_sum.y / gyro_sum_count);
_applyYaw(state.flowRate);
_applyYaw(state.bodyRate);
} else {
// first frame received in some time so cannot calculate flow values
state.flowRate.zero();
state.bodyRate.zero();
}
_update_frontend(state);
// reset gyro sum
gyro_sum.zero();
gyro_sum_count = 0;
}