/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* Example of APM_Compass library (HMC5843 sensor).
* Code by Jordi MuĂ’oz and Jose Julio. DIYDrones.com
*/
#include
#include
#include
#include
#include
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
static AP_BoardConfig board_config;
class DummyVehicle {
public:
AP_AHRS_DCM ahrs; // Need since https://github.com/ArduPilot/ardupilot/pull/10890
AP_Baro baro; // Compass tries to set magnetic model based on location.
};
static DummyVehicle vehicle;
// create compass object
static Compass compass;
static AP_SerialManager serial_manager;
uint32_t timer;
// to be called only once on boot for initializing objects
static void setup()
{
hal.console->printf("Compass library test\n");
board_config.init();
vehicle.ahrs.init();
compass.init();
hal.console->printf("init done - %u compasses detected\n", compass.get_count());
// set offsets to account for surrounding interference
compass.set_and_save_offsets(0, Vector3f(0, 0, 0));
// set local difference between magnetic north and true north
compass.set_declination(ToRad(0.0f));
hal.scheduler->delay(1000);
timer = AP_HAL::micros();
}
// loop
static void loop()
{
static const uint8_t compass_count = compass.get_count();
static float min[COMPASS_MAX_INSTANCES][3];
static float max[COMPASS_MAX_INSTANCES][3];
static float offset[COMPASS_MAX_INSTANCES][3];
// run read() at 10Hz
if ((AP_HAL::micros() - timer) > 100000L) {
timer = AP_HAL::micros();
compass.read();
const uint32_t read_time = AP_HAL::micros() - timer;
for (uint8_t i = 0; i < compass_count; i++) {
float heading;
hal.console->printf("Compass #%u: ", i);
if (!compass.healthy()) {
hal.console->printf("not healthy\n");
continue;
}
Matrix3f dcm_matrix;
// use roll = 0, pitch = 0 for this example
dcm_matrix.from_euler(0, 0, 0);
heading = compass.calculate_heading(dcm_matrix, i);
const Vector3f &mag = compass.get_field(i);
// capture min
min[i][0] = MIN(mag.x, min[i][0]);
min[i][1] = MIN(mag.y, min[i][1]);
min[i][2] = MIN(mag.z, min[i][2]);
// capture max
max[i][0] = MAX(mag.x, max[i][0]);
max[i][1] = MAX(mag.y, max[i][1]);
max[i][2] = MAX(mag.z, max[i][2]);
// calculate offsets
offset[i][0] = -(max[i][0] + min[i][0]) / 2;
offset[i][1] = -(max[i][1] + min[i][1]) / 2;
offset[i][2] = -(max[i][2] + min[i][2]) / 2;
// display all to user
hal.console->printf("Heading: %.2f (%3d, %3d, %3d)",
(double)ToDeg(heading),
(int)mag.x,
(int)mag.y,
(int)mag.z);
// display offsets
hal.console->printf(" offsets(%.2f, %.2f, %.2f)",
(double)offset[i][0],
(double)offset[i][1],
(double)offset[i][2]);
hal.console->printf(" t=%u", (unsigned)read_time);
hal.console->printf("\n");
}
} else {
// if stipulated time has not passed between two distinct readings, delay the program for a millisecond
hal.scheduler->delay(1);
}
}
AP_HAL_MAIN();