/* ChibiOS - Copyright (C) 2006..2018 Giovanni Di Sirio Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /** * @file STM32H7xx/hal_lld.c * @brief STM32H7xx HAL subsystem low level driver source. * * @addtogroup HAL * @{ */ #include "hal.h" /*===========================================================================*/ /* Driver local definitions. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** * @brief CMSIS system core clock variable. * @note It is declared in system_stm32f7xx.h. */ uint32_t SystemCoreClock = STM32_CORE_CK; /*===========================================================================*/ /* Driver local variables and types. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ /** * @brief Initializes the backup domain. * @note WARNING! Changing clock source impossible without resetting * of the whole BKP domain. */ static inline void init_bkp_domain(void) { /* Backup domain access enabled and left open.*/ PWR->CR1 |= PWR_CR1_DBP; /* Reset BKP domain if different clock source selected.*/ if ((RCC->BDCR & STM32_RTCSEL_MASK) != STM32_RTCSEL) { /* Backup domain reset.*/ RCC->BDCR = RCC_BDCR_BDRST; RCC->BDCR = 0; } #if STM32_LSE_ENABLED #if defined(STM32_LSE_BYPASS) /* LSE Bypass.*/ RCC->BDCR |= STM32_LSEDRV | RCC_BDCR_LSEON | RCC_BDCR_LSEBYP; #else /* No LSE Bypass.*/ RCC->BDCR |= STM32_LSEDRV | RCC_BDCR_LSEON; #endif while ((RCC->BDCR & RCC_BDCR_LSERDY) == 0) ; /* Waits until LSE is stable. */ #endif #if HAL_USE_RTC /* If the backup domain hasn't been initialized yet then proceed with initialization.*/ if ((RCC->BDCR & RCC_BDCR_RTCEN) == 0) { /* Selects clock source.*/ RCC->BDCR |= STM32_RTCSEL; /* RTC clock enabled.*/ RCC->BDCR |= RCC_BDCR_RTCEN; } #endif /* HAL_USE_RTC */ } /** * @brief Initializes the PWR unit. */ static inline void init_pwr(void) { #if 0 PWR_TypeDef *pwr = PWR; /* For inspection.*/ (void)pwr; #endif PWR->CR1 = STM32_PWR_CR1 | 0xF0000000; PWR->CR2 = STM32_PWR_CR2; PWR->CR3 = STM32_PWR_CR3; PWR->CPUCR = STM32_PWR_CPUCR; PWR->D3CR = STM32_VOS; while ((PWR->D3CR & PWR_D3CR_VOSRDY) == 0) ; #if STM32_PWR_CR2 & PWR_CR2_BREN // while ((PWR->CR2 & PWR_CR2_BRRDY) == 0) // ; // rccEnableBKPRAM(true); #endif } /*===========================================================================*/ /* Driver interrupt handlers. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver exported functions. */ /*===========================================================================*/ /** * @brief Low level HAL driver initialization. * * @notapi */ void hal_lld_init(void) { /* Reset of all peripherals. AHB3 is not reset entirely because FMC could have been initialized in the board initialization file (board.c). Note, GPIOs are not reset because initialized before this point in board files.*/ rccResetAHB1(~0); rccResetAHB2(~0); rccResetAHB3(~(RCC_AHB3RSTR_CPURST | RCC_AHB3RSTR_FMCRST)); rccResetAHB4(~(STM32_GPIO_EN_MASK)); rccResetAPB1L(~0); rccResetAPB1H(~0); rccResetAPB2(~0); rccResetAPB3(~0); rccResetAPB4(~0); /* DMA subsystems initialization.*/ #if defined(STM32_BDMA_REQUIRED) bdmaInit(); #endif #if defined(STM32_DMA_REQUIRED) dmaInit(); #endif /* IRQ subsystem initialization.*/ irqInit(); /* MPU initialization.*/ #if (STM32_NOCACHE_SRAM1_SRAM2 == TRUE) || (STM32_NOCACHE_SRAM3 == TRUE) { uint32_t base, size; #if (STM32_NOCACHE_SRAM1_SRAM2 == TRUE) && (STM32_NOCACHE_SRAM3 == TRUE) base = 0x30000000U; size = MPU_RASR_SIZE_512K; #elif (STM32_NOCACHE_SRAM1_SRAM2 == TRUE) && (STM32_NOCACHE_SRAM3 == FALSE) base = 0x30000000U; size = MPU_RASR_SIZE_256K; #elif (STM32_NOCACHE_SRAM1_SRAM2 == FALSE) && (STM32_NOCACHE_SRAM3 == TRUE) base = 0x30040000U; size = MPU_RASR_SIZE_16K; #else #error "invalid constants used in mcuconf.h" #endif /* The SRAM2 bank can optionally made a non cache-able area for use by DMA engines.*/ mpuConfigureRegion(MPU_REGION_7, base, MPU_RASR_ATTR_AP_RW_RW | MPU_RASR_ATTR_NON_CACHEABLE | size | MPU_RASR_ENABLE); mpuEnable(MPU_CTRL_PRIVDEFENA); /* Invalidating data cache to make sure that the MPU settings are taken immediately.*/ SCB_CleanInvalidateDCache(); } #endif } /** * @brief STM32H7xx clocks and PLL initialization. * @note All the involved constants come from the file @p board.h. * @note This function should be invoked just after the system reset. * * @special */ void stm32_clock_init(void) { uint32_t cfgr; #if 0 RCC_TypeDef *rcc = RCC; /* For inspection.*/ (void)rcc; #endif #if STM32_NO_INIT == FALSE #if !defined(STM32_DISABLE_ERRATA_2_2_15) /* Fix for errata 2.2.15: Reading from AXI SRAM might lead to data read corruption. AXI->TARG7_FN_MOD.*/ *((volatile uint32_t *)(0x51000000 + 0x1108 + 0x7000)) = 0x00000001U; #endif /* PWR initialization.*/ init_pwr(); /* Backup domain initialization.*/ init_bkp_domain(); /* HSI setup, it enforces the reset situation in order to handle possible problems with JTAG probes and re-initializations.*/ RCC->CR |= RCC_CR_HSION; /* Make sure HSI is ON. */ while (!(RCC->CR & RCC_CR_HSIRDY)) ; /* Wait until HSI is stable. */ /* HSI is selected as new source without touching the other fields in CFGR. This is only required when using a debugger than can cause restarts.*/ RCC->CFGR = 0x00000000U; /* Reset SW to HSI. */ while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI) ; /* Wait until HSI is selected. */ /* Registers cleared to reset values.*/ RCC->CR = RCC_CR_HSION; /* CR Reset value. */ RCC->ICSCR = 0x40000000U; /* ICSCR Reset value. */ RCC->CSR = 0x00000000U; /* CSR reset value. */ RCC->PLLCFGR = 0x01FF0000U; /* PLLCFGR reset value. */ /* Other clock-related settings, done before other things because recommended in the RM.*/ cfgr = STM32_MCO2SEL | RCC_CFGR_MCO2PRE_VALUE(STM32_MCO2PRE_VALUE) | STM32_MCO1SEL | RCC_CFGR_MCO1PRE_VALUE(STM32_MCO1PRE_VALUE) | RCC_CFGR_RTCPRE_VALUE(STM32_RTCPRE_VALUE) | STM32_HRTIMSEL | STM32_STOPKERWUCK | STM32_STOPWUCK; #if STM32_TIMPRE_ENABLE == TRUE cfgr |= RCC_CFGR_TIMPRE; #endif RCC->CFGR = cfgr; /* HSE activation with optional bypass.*/ #if STM32_HSE_ENABLED == TRUE #if defined(STM32_HSE_BYPASS) RCC->CR |= RCC_CR_HSEON | RCC_CR_HSEBYP; #else RCC->CR |= RCC_CR_HSEON; #endif while ((RCC->CR & RCC_CR_HSERDY) == 0) ; /* Waits until HSE is stable. */ #endif /* CSI activation.*/ #if STM32_CSI_ENABLED == TRUE RCC->CR |= RCC_CR_CSION; while ((RCC->CR & RCC_CR_CSIRDY) == 0) ; /* Waits until CSI is stable. */ #endif /* STM32_HSE_ENABLED == TRUE */ /* LSI activation.*/ #if STM32_LSI_ENABLED == TRUE RCC->CSR |= RCC_CSR_LSION; while ((RCC->CSR & RCC_CSR_LSIRDY) == 0) ; /* Waits until LSI is stable. */ #endif /* STM32_LSI_ENABLED == TRUE */ /* PLLs activation, it happens in parallel in order to reduce boot time.*/ #if (STM32_PLL1_ENABLED == TRUE) || \ (STM32_PLL2_ENABLED == TRUE) || \ (STM32_PLL3_ENABLED == TRUE) { uint32_t onmask = 0; uint32_t rdymask = 0; uint32_t cfgmask = 0; RCC->PLLCKSELR = RCC_PLLCKSELR_DIVM3_VALUE(STM32_PLL3_DIVM_VALUE) | RCC_PLLCKSELR_DIVM2_VALUE(STM32_PLL2_DIVM_VALUE) | RCC_PLLCKSELR_DIVM1_VALUE(STM32_PLL1_DIVM_VALUE) | RCC_PLLCKSELR_PLLSRC_VALUE(STM32_PLLSRC); cfgmask = STM32_PLLCFGR_PLL3RGE | STM32_PLLCFGR_PLL3VCOSEL | RCC_PLLCFGR_PLL3FRACEN | STM32_PLLCFGR_PLL2RGE | STM32_PLLCFGR_PLL2VCOSEL | RCC_PLLCFGR_PLL2FRACEN | STM32_PLLCFGR_PLL1RGE | STM32_PLLCFGR_PLL1VCOSEL | RCC_PLLCFGR_PLL1FRACEN; #if STM32_PLL1_ENABLED == TRUE RCC->PLL1FRACR = STM32_PLL1_FRACN; RCC->PLL1DIVR = STM32_PLL1_DIVR | STM32_PLL1_DIVQ | STM32_PLL1_DIVP | STM32_PLL1_DIVN; onmask |= RCC_CR_PLL1ON; rdymask |= RCC_CR_PLL1RDY; #if STM32_PLL1_P_ENABLED == TRUE cfgmask |= RCC_PLLCFGR_DIVP1EN; #endif #if STM32_PLL1_Q_ENABLED == TRUE cfgmask |= RCC_PLLCFGR_DIVQ1EN; #endif #if STM32_PLL1_R_ENABLED == TRUE cfgmask |= RCC_PLLCFGR_DIVR1EN; #endif #endif /* STM32_PLL1_ENABLED == TRUE */ #if STM32_PLL2_ENABLED == TRUE RCC->PLL2FRACR = STM32_PLL2_FRACN; RCC->PLL2DIVR = STM32_PLL2_DIVR | STM32_PLL2_DIVQ | STM32_PLL2_DIVP | STM32_PLL2_DIVN; onmask |= RCC_CR_PLL2ON; rdymask |= RCC_CR_PLL2RDY; #if STM32_PLL2_P_ENABLED == TRUE cfgmask |= RCC_PLLCFGR_DIVP2EN; #endif #if STM32_PLL2_Q_ENABLED == TRUE cfgmask |= RCC_PLLCFGR_DIVQ2EN; #endif #if STM32_PLL2_R_ENABLED == TRUE cfgmask |= RCC_PLLCFGR_DIVR2EN; #endif #endif /* STM32_PLL2_ENABLED == TRUE */ #if STM32_PLL3_ENABLED == TRUE RCC->PLL3FRACR = STM32_PLL3_FRACN; RCC->PLL3DIVR = STM32_PLL3_DIVR | STM32_PLL3_DIVQ | STM32_PLL3_DIVP | STM32_PLL3_DIVN; onmask |= RCC_CR_PLL3ON; rdymask |= RCC_CR_PLL3RDY; #if STM32_PLL3_P_ENABLED == TRUE cfgmask |= RCC_PLLCFGR_DIVP3EN; #endif #if STM32_PLL3_Q_ENABLED == TRUE cfgmask |= RCC_PLLCFGR_DIVQ3EN; #endif #if STM32_PLL3_R_ENABLED == TRUE cfgmask |= RCC_PLLCFGR_DIVR3EN; #endif #endif /* STM32_PLL3_ENABLED == TRUE */ /* Activating enabled PLLs and waiting for all of them to become ready.*/ RCC->PLLCFGR = cfgmask & STM32_PLLCFGR_MASK; RCC->CR |= onmask; while ((RCC->CR & rdymask) != rdymask) ; } #endif /* STM32_PLL1_ENABLED || STM32_PLL2_ENABLED || STM32_PLL3_ENABLED */ /* AHB and APB dividers.*/ RCC->D1CFGR = STM32_D1CPRE | STM32_D1PPRE3 | STM32_D1HPRE; RCC->D2CFGR = STM32_D2PPRE2 | STM32_D2PPRE1; RCC->D3CFGR = STM32_D3PPRE4; /* Peripherals clocks.*/ RCC->D1CCIPR = STM32_CKPERSEL | STM32_SDMMCSEL | STM32_QSPISEL | STM32_FMCSEL; RCC->D2CCIP1R = STM32_SWPSEL | STM32_FDCANSEL | STM32_DFSDM1SEL | STM32_SPDIFSEL | STM32_SPDIFSEL | STM32_SPI45SEL | STM32_SPI123SEL | STM32_SAI23SEL | STM32_SAI1SEL; RCC->D2CCIP2R = STM32_LPTIM1SEL | STM32_CECSEL | STM32_USBSEL | STM32_I2C123SEL | STM32_RNGSEL | STM32_USART16SEL | STM32_USART234578SEL; RCC->D3CCIPR = STM32_SPI6SEL | STM32_SAI4BSEL | STM32_SAI4ASEL | STM32_ADCSEL | STM32_LPTIM345SEL | STM32_LPTIM2SEL | STM32_I2C4SEL | STM32_LPUART1SEL; /* Flash setup.*/ FLASH->ACR = FLASH_ACR_WRHIGHFREQ_2 | STM32_FLASHBITS; /* Switching to the configured clock source if it is different from HSI.*/ #if STM32_SW != STM32_SW_HSI_CK RCC->CFGR |= STM32_SW; /* Switches on the selected clock source. */ while ((RCC->CFGR & RCC_CFGR_SWS) != (STM32_SW << 3U)) ; #endif #if 0 /* Peripheral clock sources.*/ RCC->DCKCFGR2 = STM32_SDMMCSEL | STM32_CK48MSEL | STM32_CECSEL | STM32_LPTIM1SEL | STM32_I2C4SEL | STM32_I2C3SEL | STM32_I2C2SEL | STM32_I2C1SEL | STM32_UART8SEL | STM32_UART7SEL | STM32_USART6SEL | STM32_UART5SEL | STM32_UART4SEL | STM32_USART3SEL | STM32_USART2SEL | STM32_USART1SEL; #endif #endif /* STM32_NO_INIT */ /* RAM1 2 and 3 clocks enabled.*/ rccEnableSRAM1(true); rccEnableSRAM2(true); rccEnableSRAM3(true); /* SYSCFG clock enabled here because it is a multi-functional unit shared among multiple drivers.*/ rccEnableAPB4(RCC_APB4ENR_SYSCFGEN, true); } /** @} */