#pragma once
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* AHRS (Attitude Heading Reference System) interface for ArduPilot
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
class AP_NMEA_Output;
class OpticalFlow;
#define AP_AHRS_TRIM_LIMIT 10.0f // maximum trim angle in degrees
#define AP_AHRS_RP_P_MIN 0.05f // minimum value for AHRS_RP_P parameter
#define AP_AHRS_YAW_P_MIN 0.05f // minimum value for AHRS_YAW_P parameter
enum AHRS_VehicleClass : uint8_t {
AHRS_VEHICLE_UNKNOWN,
AHRS_VEHICLE_GROUND,
AHRS_VEHICLE_COPTER,
AHRS_VEHICLE_FIXED_WING,
AHRS_VEHICLE_SUBMARINE,
};
// forward declare view class
class AP_AHRS_View;
class AP_AHRS
{
public:
friend class AP_AHRS_View;
// Constructor
AP_AHRS() :
_vehicle_class(AHRS_VEHICLE_UNKNOWN),
_cos_roll(1.0f),
_cos_pitch(1.0f),
_cos_yaw(1.0f)
{
_singleton = this;
// load default values from var_info table
AP_Param::setup_object_defaults(this, var_info);
// base the ki values by the sensors maximum drift
// rate.
_gyro_drift_limit = AP::ins().get_gyro_drift_rate();
// enable centrifugal correction by default
_flags.correct_centrifugal = true;
_last_trim = _trim.get();
_rotation_autopilot_body_to_vehicle_body.from_euler(_last_trim.x, _last_trim.y, 0.0f);
_rotation_vehicle_body_to_autopilot_body = _rotation_autopilot_body_to_vehicle_body.transposed();
}
// empty virtual destructor
virtual ~AP_AHRS() {}
// get singleton instance
static AP_AHRS *get_singleton() {
return _singleton;
}
// init sets up INS board orientation
virtual void init();
// Accessors
void set_fly_forward(bool b) {
_flags.fly_forward = b;
}
bool get_fly_forward(void) const {
return _flags.fly_forward;
}
/*
set the "likely flying" flag. This is not guaranteed to be
accurate, but is the vehicle codes best guess as to the whether
the vehicle is currently flying
*/
void set_likely_flying(bool b) {
if (b && !_flags.likely_flying) {
_last_flying_ms = AP_HAL::millis();
}
_flags.likely_flying = b;
}
/*
get the likely flying status. Returns true if the vehicle code
thinks we are flying at the moment. Not guaranteed to be
accurate
*/
bool get_likely_flying(void) const {
return _flags.likely_flying;
}
/*
return time in milliseconds since likely_flying was set
true. Returns zero if likely_flying is currently false
*/
uint32_t get_time_flying_ms(void) const {
if (!_flags.likely_flying) {
return 0;
}
return AP_HAL::millis() - _last_flying_ms;
}
AHRS_VehicleClass get_vehicle_class(void) const {
return _vehicle_class;
}
void set_vehicle_class(AHRS_VehicleClass vclass) {
_vehicle_class = vclass;
}
void set_wind_estimation(bool b) {
_flags.wind_estimation = b;
}
void set_compass(Compass *compass) {
_compass = compass;
update_orientation();
}
const Compass* get_compass() const {
return _compass;
}
void set_optflow(const OpticalFlow *optflow) {
_optflow = optflow;
}
const OpticalFlow* get_optflow() const {
return _optflow;
}
// allow for runtime change of orientation
// this makes initial config easier
void update_orientation();
void set_airspeed(AP_Airspeed *airspeed) {
_airspeed = airspeed;
}
const AP_Airspeed *get_airspeed(void) const {
return _airspeed;
}
// get the index of the current primary accelerometer sensor
virtual uint8_t get_primary_accel_index(void) const {
return AP::ins().get_primary_accel();
}
// get the index of the current primary gyro sensor
virtual uint8_t get_primary_gyro_index(void) const {
return AP::ins().get_primary_gyro();
}
// accelerometer values in the earth frame in m/s/s
virtual const Vector3f &get_accel_ef(uint8_t i) const {
return _accel_ef[i];
}
virtual const Vector3f &get_accel_ef(void) const {
return get_accel_ef(AP::ins().get_primary_accel());
}
// blended accelerometer values in the earth frame in m/s/s
virtual const Vector3f &get_accel_ef_blended(void) const {
return _accel_ef_blended;
}
// get yaw rate in earth frame in radians/sec
float get_yaw_rate_earth(void) const {
return get_gyro() * get_rotation_body_to_ned().c;
}
// Methods
virtual void update(bool skip_ins_update=false) = 0;
// report any reason for why the backend is refusing to initialise
virtual const char *prearm_failure_reason(void) const {
return nullptr;
}
// check all cores providing consistent attitudes for prearm checks
virtual bool attitudes_consistent(char *failure_msg, const uint8_t failure_msg_len) const { return true; }
// is the EKF backend doing its own sensor logging?
virtual bool have_ekf_logging(void) const {
return false;
}
// see if EKF lane switching is possible to avoid EKF failsafe
virtual void check_lane_switch(void) {}
// Euler angles (radians)
float roll;
float pitch;
float yaw;
float get_roll() const { return roll; }
float get_pitch() const { return pitch; }
float get_yaw() const { return yaw; }
// integer Euler angles (Degrees * 100)
int32_t roll_sensor;
int32_t pitch_sensor;
int32_t yaw_sensor;
// return a smoothed and corrected gyro vector in radians/second
virtual const Vector3f &get_gyro(void) const = 0;
// return a smoothed and corrected gyro vector in radians/second using the latest ins data (which may not have been consumed by the EKF yet)
Vector3f get_gyro_latest(void) const;
// return the current estimate of the gyro drift
virtual const Vector3f &get_gyro_drift(void) const = 0;
// reset the current gyro drift estimate
// should be called if gyro offsets are recalculated
virtual void reset_gyro_drift(void) = 0;
// reset the current attitude, used on new IMU calibration
virtual void reset(bool recover_eulers=false) = 0;
// reset the current attitude, used on new IMU calibration
virtual void reset_attitude(const float &roll, const float &pitch, const float &yaw) = 0;
// return the average size of the roll/pitch error estimate
// since last call
virtual float get_error_rp(void) const = 0;
// return the average size of the yaw error estimate
// since last call
virtual float get_error_yaw(void) const = 0;
// return a DCM rotation matrix representing our current attitude
virtual const Matrix3f &get_rotation_body_to_ned(void) const = 0;
// return a Quaternion representing our current attitude
void get_quat_body_to_ned(Quaternion &quat) const {
quat.from_rotation_matrix(get_rotation_body_to_ned());
}
const Matrix3f& get_rotation_autopilot_body_to_vehicle_body(void) const { return _rotation_autopilot_body_to_vehicle_body; }
const Matrix3f& get_rotation_vehicle_body_to_autopilot_body(void) const { return _rotation_vehicle_body_to_autopilot_body; }
// get rotation matrix specifically from DCM backend (used for compass calibrator)
virtual const Matrix3f &get_DCM_rotation_body_to_ned(void) const = 0;
// get our current position estimate. Return true if a position is available,
// otherwise false. This call fills in lat, lng and alt
virtual bool get_position(struct Location &loc) const = 0;
// get latest altitude estimate above ground level in meters and validity flag
virtual bool get_hagl(float &height) const { return false; }
// return a wind estimation vector, in m/s
virtual Vector3f wind_estimate(void) const = 0;
// return an airspeed estimate if available. return true
// if we have an estimate
virtual bool airspeed_estimate(float *airspeed_ret) const WARN_IF_UNUSED;
// return a true airspeed estimate (navigation airspeed) if
// available. return true if we have an estimate
bool airspeed_estimate_true(float *airspeed_ret) const WARN_IF_UNUSED {
if (!airspeed_estimate(airspeed_ret)) {
return false;
}
*airspeed_ret *= get_EAS2TAS();
return true;
}
// get apparent to true airspeed ratio
float get_EAS2TAS(void) const;
// return true if airspeed comes from an airspeed sensor, as
// opposed to an IMU estimate
bool airspeed_sensor_enabled(void) const {
return _airspeed != nullptr && _airspeed->use() && _airspeed->healthy();
}
// return the parameter AHRS_WIND_MAX in metres per second
uint8_t get_max_wind() const {
return _wind_max;
}
// return a ground vector estimate in meters/second, in North/East order
virtual Vector2f groundspeed_vector(void);
// return a ground velocity in meters/second, North/East/Down
// order. This will only be accurate if have_inertial_nav() is
// true
virtual bool get_velocity_NED(Vector3f &vec) const WARN_IF_UNUSED {
return false;
}
// returns the expected NED magnetic field
virtual bool get_expected_mag_field_NED(Vector3f &ret) const WARN_IF_UNUSED {
return false;
}
// returns the estimated magnetic field offsets in body frame
virtual bool get_mag_field_correction(Vector3f &ret) const WARN_IF_UNUSED {
return false;
}
// return a position relative to home in meters, North/East/Down
// order. This will only be accurate if have_inertial_nav() is
// true
virtual bool get_relative_position_NED_home(Vector3f &vec) const WARN_IF_UNUSED {
return false;
}
// return a position relative to origin in meters, North/East/Down
// order. This will only be accurate if have_inertial_nav() is
// true
virtual bool get_relative_position_NED_origin(Vector3f &vec) const WARN_IF_UNUSED {
return false;
}
// return a position relative to home in meters, North/East
// order. Return true if estimate is valid
virtual bool get_relative_position_NE_home(Vector2f &vecNE) const WARN_IF_UNUSED {
return false;
}
// return a position relative to origin in meters, North/East
// order. Return true if estimate is valid
virtual bool get_relative_position_NE_origin(Vector2f &vecNE) const WARN_IF_UNUSED {
return false;
}
// return a Down position relative to home in meters
// if EKF is unavailable will return the baro altitude
virtual void get_relative_position_D_home(float &posD) const = 0;
// return a Down position relative to origin in meters
// Return true if estimate is valid
virtual bool get_relative_position_D_origin(float &posD) const WARN_IF_UNUSED {
return false;
}
// return ground speed estimate in meters/second. Used by ground vehicles.
float groundspeed(void) {
return groundspeed_vector().length();
}
// return true if we will use compass for yaw
virtual bool use_compass(void) {
return _compass && _compass->use_for_yaw();
}
// return true if yaw has been initialised
bool yaw_initialised(void) const {
return _flags.have_initial_yaw;
}
// set the correct centrifugal flag
// allows arducopter to disable corrections when disarmed
void set_correct_centrifugal(bool setting) {
_flags.correct_centrifugal = setting;
}
// get the correct centrifugal flag
bool get_correct_centrifugal(void) const {
return _flags.correct_centrifugal;
}
// get trim
const Vector3f &get_trim() const {
return _trim.get();
}
// set trim
void set_trim(const Vector3f &new_trim);
// add_trim - adjust the roll and pitch trim up to a total of 10 degrees
void add_trim(float roll_in_radians, float pitch_in_radians, bool save_to_eeprom = true);
// helper trig value accessors
float cos_roll() const {
return _cos_roll;
}
float cos_pitch() const {
return _cos_pitch;
}
float cos_yaw() const {
return _cos_yaw;
}
float sin_roll() const {
return _sin_roll;
}
float sin_pitch() const {
return _sin_pitch;
}
float sin_yaw() const {
return _sin_yaw;
}
// for holding parameters
static const struct AP_Param::GroupInfo var_info[];
// return secondary attitude solution if available, as eulers in radians
virtual bool get_secondary_attitude(Vector3f &eulers) const WARN_IF_UNUSED {
return false;
}
// return secondary attitude solution if available, as quaternion
virtual bool get_secondary_quaternion(Quaternion &quat) const WARN_IF_UNUSED {
return false;
}
// return secondary position solution if available
virtual bool get_secondary_position(struct Location &loc) const WARN_IF_UNUSED {
return false;
}
// get the home location. This is const to prevent any changes to
// home without telling AHRS about the change
const struct Location &get_home(void) const {
return _home;
}
// functions to handle locking of home. Some vehicles use this to
// allow GCS to lock in a home location.
void lock_home() {
_home_locked = true;
}
bool home_is_locked() const {
return _home_locked;
}
// returns true if home is set
bool home_is_set(void) const {
return _home_is_set;
}
// set the home location in 10e7 degrees. This should be called
// when the vehicle is at this position. It is assumed that the
// current barometer and GPS altitudes correspond to this altitude
virtual bool set_home(const Location &loc) WARN_IF_UNUSED = 0;
// set the EKF's origin location in 10e7 degrees. This should only
// be called when the EKF has no absolute position reference (i.e. GPS)
// from which to decide the origin on its own
virtual bool set_origin(const Location &loc) WARN_IF_UNUSED { return false; }
// returns the inertial navigation origin in lat/lon/alt
virtual bool get_origin(Location &ret) const WARN_IF_UNUSED { return false; }
void Log_Write_Home_And_Origin();
// return true if the AHRS object supports inertial navigation,
// with very accurate position and velocity
virtual bool have_inertial_nav(void) const {
return false;
}
// return the active accelerometer instance
uint8_t get_active_accel_instance(void) const {
return _active_accel_instance;
}
// is the AHRS subsystem healthy?
virtual bool healthy(void) const = 0;
virtual bool prearm_healthy(void) const { return healthy(); }
// true if the AHRS has completed initialisation
virtual bool initialised(void) const {
return true;
};
// return the amount of yaw angle change due to the last yaw angle reset in radians
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
virtual uint32_t getLastYawResetAngle(float &yawAng) const {
return 0;
};
// return the amount of NE position change in metres due to the last reset
// returns the time of the last reset or 0 if no reset has ever occurred
virtual uint32_t getLastPosNorthEastReset(Vector2f &pos) const WARN_IF_UNUSED {
return 0;
};
// return the amount of NE velocity change in metres/sec due to the last reset
// returns the time of the last reset or 0 if no reset has ever occurred
virtual uint32_t getLastVelNorthEastReset(Vector2f &vel) const WARN_IF_UNUSED {
return 0;
};
// return the amount of vertical position change due to the last reset in meters
// returns the time of the last reset or 0 if no reset has ever occurred
virtual uint32_t getLastPosDownReset(float &posDelta) const WARN_IF_UNUSED {
return 0;
};
// Resets the baro so that it reads zero at the current height
// Resets the EKF height to zero
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
// Returns true if the height datum reset has been performed
// If using a range finder for height no reset is performed and it returns false
virtual bool resetHeightDatum(void) WARN_IF_UNUSED {
return false;
}
// get_variances - provides the innovations normalised using the innovation variance where a value of 0
// indicates perfect consistency between the measurement and the EKF solution and a value of of 1 is the maximum
// inconsistency that will be accepted by the filter
// boolean false is returned if variances are not available
virtual bool get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const {
return false;
}
// get the selected ekf type, for allocation decisions
int8_t get_ekf_type(void) const {
return _ekf_type;
}
// Retrieves the corrected NED delta velocity in use by the inertial navigation
virtual void getCorrectedDeltaVelocityNED(Vector3f& ret, float& dt) const {
ret.zero();
const AP_InertialSensor &_ins = AP::ins();
_ins.get_delta_velocity(ret);
dt = _ins.get_delta_velocity_dt();
}
// create a view
AP_AHRS_View *create_view(enum Rotation rotation, float pitch_trim_deg=0);
// return calculated AOA
float getAOA(void);
// return calculated SSA
float getSSA(void);
// rotate a 2D vector from earth frame to body frame
// in result, x is forward, y is right
Vector2f rotate_earth_to_body2D(const Vector2f &ef_vector) const;
// rotate a 2D vector from earth frame to body frame
// in input, x is forward, y is right
Vector2f rotate_body_to_earth2D(const Vector2f &bf) const;
virtual void update_AOA_SSA(void);
// get_hgt_ctrl_limit - get maximum height to be observed by the
// control loops in meters and a validity flag. It will return
// false when no limiting is required
virtual bool get_hgt_ctrl_limit(float &limit) const WARN_IF_UNUSED { return false; };
// Write position and quaternion data from an external navigation system
virtual void writeExtNavData(const Vector3f &sensOffset, const Vector3f &pos, const Quaternion &quat, float posErr, float angErr, uint32_t timeStamp_ms, uint32_t resetTime_ms) { }
// allow threads to lock against AHRS update
HAL_Semaphore &get_semaphore(void) {
return _rsem;
}
protected:
void update_nmea_out();
// multi-thread access support
HAL_Semaphore_Recursive _rsem;
AHRS_VehicleClass _vehicle_class;
// settable parameters
// these are public for ArduCopter
AP_Float _kp_yaw;
AP_Float _kp;
AP_Float gps_gain;
AP_Float beta;
AP_Int8 _gps_use;
AP_Int8 _wind_max;
AP_Int8 _board_orientation;
AP_Int8 _gps_minsats;
AP_Int8 _gps_delay;
AP_Int8 _ekf_type;
AP_Float _custom_roll;
AP_Float _custom_pitch;
AP_Float _custom_yaw;
Matrix3f _custom_rotation;
// flags structure
struct ahrs_flags {
uint8_t have_initial_yaw : 1; // whether the yaw value has been intialised with a reference
uint8_t fly_forward : 1; // 1 if we can assume the aircraft will be flying forward on its X axis
uint8_t correct_centrifugal : 1; // 1 if we should correct for centrifugal forces (allows arducopter to turn this off when motors are disarmed)
uint8_t wind_estimation : 1; // 1 if we should do wind estimation
uint8_t likely_flying : 1; // 1 if vehicle is probably flying
} _flags;
// time when likely_flying last went true
uint32_t _last_flying_ms;
// calculate sin/cos of roll/pitch/yaw from rotation
void calc_trig(const Matrix3f &rot,
float &cr, float &cp, float &cy,
float &sr, float &sp, float &sy) const;
// update_trig - recalculates _cos_roll, _cos_pitch, etc based on latest attitude
// should be called after _dcm_matrix is updated
void update_trig(void);
// update roll_sensor, pitch_sensor and yaw_sensor
void update_cd_values(void);
// pointer to compass object, if available
Compass * _compass;
// pointer to OpticalFlow object, if available
const OpticalFlow *_optflow;
// pointer to airspeed object, if available
AP_Airspeed * _airspeed;
// time in microseconds of last compass update
uint32_t _compass_last_update;
// a vector to capture the difference between the controller and body frames
AP_Vector3f _trim;
// cached trim rotations
Vector3f _last_trim;
Matrix3f _rotation_autopilot_body_to_vehicle_body;
Matrix3f _rotation_vehicle_body_to_autopilot_body;
// the limit of the gyro drift claimed by the sensors, in
// radians/s/s
float _gyro_drift_limit;
// accelerometer values in the earth frame in m/s/s
Vector3f _accel_ef[INS_MAX_INSTANCES];
Vector3f _accel_ef_blended;
// Declare filter states for HPF and LPF used by complementary
// filter in AP_AHRS::groundspeed_vector
Vector2f _lp; // ground vector low-pass filter
Vector2f _hp; // ground vector high-pass filter
Vector2f _lastGndVelADS; // previous HPF input
// reference position for NED positions
struct Location _home;
bool _home_is_set :1;
bool _home_locked :1;
// helper trig variables
float _cos_roll, _cos_pitch, _cos_yaw;
float _sin_roll, _sin_pitch, _sin_yaw;
// which accelerometer instance is active
uint8_t _active_accel_instance;
// optional view class
AP_AHRS_View *_view;
// AOA and SSA
float _AOA, _SSA;
uint32_t _last_AOA_update_ms;
private:
static AP_AHRS *_singleton;
AP_NMEA_Output* _nmea_out;
};
#include "AP_AHRS_DCM.h"
#include "AP_AHRS_NavEKF.h"
#if AP_AHRS_NAVEKF_AVAILABLE
#define AP_AHRS_TYPE AP_AHRS_NavEKF
#else
#define AP_AHRS_TYPE AP_AHRS
#endif
namespace AP {
AP_AHRS &ahrs();
// use ahrs_navekf() only where the AHRS interface doesn't expose the
// functionality you require:
#if AP_AHRS_NAVEKF_AVAILABLE
AP_AHRS_NavEKF &ahrs_navekf();
#endif
};