/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include "AP_Proximity_AirSimSITL.h"
#include
extern const AP_HAL::HAL& hal;
#define PROXIMITY_MAX_RANGE 100.0f
#define PROXIMITY_ACCURACY 0.1f
/*
The constructor also initialises the proximity sensor.
*/
AP_Proximity_AirSimSITL::AP_Proximity_AirSimSITL(AP_Proximity &_frontend,
AP_Proximity::Proximity_State &_state):
AP_Proximity_Backend(_frontend, _state),
sitl(AP::sitl())
{
}
// update the state of the sensor
void AP_Proximity_AirSimSITL::update(void)
{
SITL::vector3f_array &points = sitl->state.scanner.points;
if (points.length == 0) {
set_status(AP_Proximity::Proximity_NoData);
return;
}
set_status(AP_Proximity::Proximity_Good);
memset(_distance_valid, 0, sizeof(_distance_valid));
memset(_angle, 0, sizeof(_angle));
memset(_distance, 0, sizeof(_distance));
// only use 8 sectors to match RPLidar
const uint8_t nsectors = MIN(8, PROXIMITY_SECTORS_MAX);
const uint16_t degrees_per_sector = 360 / nsectors;
for (uint16_t i=0; i