/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * Example of APM_Compass library (HMC5843 sensor). * Code by Jordi MuĂ’oz and Jose Julio. DIYDrones.com */ #include #include #include #include #include const AP_HAL::HAL& hal = AP_HAL::get_HAL(); static AP_BoardConfig board_config; class DummyVehicle { public: AP_AHRS_DCM ahrs; // Need since https://github.com/ArduPilot/ardupilot/pull/10890 AP_Baro baro; // Compass tries to set magnetic model based on location. }; static DummyVehicle vehicle; // create compass object static Compass compass; static AP_SerialManager serial_manager; uint32_t timer; // to be called only once on boot for initializing objects static void setup() { hal.console->printf("Compass library test\n"); board_config.init(); vehicle.ahrs.init(); compass.init(); hal.console->printf("init done - %u compasses detected\n", compass.get_count()); // set offsets to account for surrounding interference compass.set_and_save_offsets(0, Vector3f(0, 0, 0)); // set local difference between magnetic north and true north compass.set_declination(ToRad(0.0f)); hal.scheduler->delay(1000); timer = AP_HAL::micros(); } // loop static void loop() { static const uint8_t compass_count = compass.get_count(); static float min[COMPASS_MAX_INSTANCES][3]; static float max[COMPASS_MAX_INSTANCES][3]; static float offset[COMPASS_MAX_INSTANCES][3]; // run read() at 10Hz if ((AP_HAL::micros() - timer) > 100000L) { timer = AP_HAL::micros(); compass.read(); const uint32_t read_time = AP_HAL::micros() - timer; for (uint8_t i = 0; i < compass_count; i++) { float heading; hal.console->printf("Compass #%u: ", i); if (!compass.healthy()) { hal.console->printf("not healthy\n"); continue; } Matrix3f dcm_matrix; // use roll = 0, pitch = 0 for this example dcm_matrix.from_euler(0, 0, 0); heading = compass.calculate_heading(dcm_matrix, i); const Vector3f &mag = compass.get_field(i); // capture min min[i][0] = MIN(mag.x, min[i][0]); min[i][1] = MIN(mag.y, min[i][1]); min[i][2] = MIN(mag.z, min[i][2]); // capture max max[i][0] = MAX(mag.x, max[i][0]); max[i][1] = MAX(mag.y, max[i][1]); max[i][2] = MAX(mag.z, max[i][2]); // calculate offsets offset[i][0] = -(max[i][0] + min[i][0]) / 2; offset[i][1] = -(max[i][1] + min[i][1]) / 2; offset[i][2] = -(max[i][2] + min[i][2]) / 2; // display all to user hal.console->printf("Heading: %.2f (%3d, %3d, %3d)", (double)ToDeg(heading), (int)mag.x, (int)mag.y, (int)mag.z); // display offsets hal.console->printf(" offsets(%.2f, %.2f, %.2f)", (double)offset[i][0], (double)offset[i][1], (double)offset[i][2]); hal.console->printf(" t=%u", (unsigned)read_time); hal.console->printf("\n"); } } else { // if stipulated time has not passed between two distinct readings, delay the program for a millisecond hal.scheduler->delay(1); } } AP_HAL_MAIN();