#!/usr/bin/env python ''' rotate APMs on bench to test magnetometers ''' from __future__ import print_function import time from math import radians from pymavlink import mavutil from argparse import ArgumentParser parser = ArgumentParser(description=__doc__) parser.add_argument("--device1", required=True, help="mavlink device1") parser.add_argument("--device2", required=True, help="mavlink device2") parser.add_argument("--baudrate", type=int, help="master port baud rate", default=115200) args = parser.parse_args() def set_attitude(rc3, rc4): global mav1, mav2 values = [ 65535 ] * 8 values[2] = rc3 values[3] = rc4 mav1.mav.rc_channels_override_send(mav1.target_system, mav1.target_component, *values) mav2.mav.rc_channels_override_send(mav2.target_system, mav2.target_component, *values) # create a mavlink instance mav1 = mavutil.mavlink_connection(args.device1, baud=args.baudrate) # create a mavlink instance mav2 = mavutil.mavlink_connection(args.device2, baud=args.baudrate) print("Waiting for HEARTBEAT") mav1.wait_heartbeat() mav2.wait_heartbeat() print("Heartbeat from APM (system %u component %u)" % (mav1.target_system, mav1.target_component)) print("Heartbeat from APM (system %u component %u)" % (mav2.target_system, mav2.target_component)) print("Waiting for MANUAL mode") mav1.recv_match(type='SYS_STATUS', condition='SYS_STATUS.mode==2 and SYS_STATUS.nav_mode==4', blocking=True) mav2.recv_match(type='SYS_STATUS', condition='SYS_STATUS.mode==2 and SYS_STATUS.nav_mode==4', blocking=True) print("Setting declination") mav1.mav.param_set_send(mav1.target_system, mav1.target_component, 'COMPASS_DEC', radians(12.33)) mav2.mav.param_set_send(mav2.target_system, mav2.target_component, 'COMPASS_DEC', radians(12.33)) set_attitude(1060, 1160) event = mavutil.periodic_event(30) pevent = mavutil.periodic_event(0.3) rc3_min = 1060 rc3_max = 1850 rc4_min = 1080 rc4_max = 1500 rc3 = rc3_min rc4 = 1160 delta3 = 2 delta4 = 1 use_pitch = 1 MAV_ACTION_CALIBRATE_GYRO = 17 mav1.mav.action_send(mav1.target_system, mav1.target_component, MAV_ACTION_CALIBRATE_GYRO) mav2.mav.action_send(mav2.target_system, mav2.target_component, MAV_ACTION_CALIBRATE_GYRO) print("Waiting for gyro calibration") mav1.recv_match(type='ACTION_ACK') mav2.recv_match(type='ACTION_ACK') print("Resetting mag offsets") mav1.mav.set_mag_offsets_send(mav1.target_system, mav1.target_component, 0, 0, 0) mav2.mav.set_mag_offsets_send(mav2.target_system, mav2.target_component, 0, 0, 0) def TrueHeading(SERVO_OUTPUT_RAW): p = float(SERVO_OUTPUT_RAW.servo3_raw - rc3_min) / (rc3_max - rc3_min) return 172 + p*(326 - 172) while True: mav1.recv_msg() mav2.recv_msg() if event.trigger(): if not use_pitch: rc4 = 1160 set_attitude(rc3, rc4) rc3 += delta3 if rc3 > rc3_max or rc3 < rc3_min: delta3 = -delta3 use_pitch ^= 1 rc4 += delta4 if rc4 > rc4_max or rc4 < rc4_min: delta4 = -delta4 if pevent.trigger(): print("hdg1: %3u hdg2: %3u ofs1: %4u, %4u, %4u ofs2: %4u, %4u, %4u" % ( mav1.messages['VFR_HUD'].heading, mav2.messages['VFR_HUD'].heading, mav1.messages['SENSOR_OFFSETS'].mag_ofs_x, mav1.messages['SENSOR_OFFSETS'].mag_ofs_y, mav1.messages['SENSOR_OFFSETS'].mag_ofs_z, mav2.messages['SENSOR_OFFSETS'].mag_ofs_x, mav2.messages['SENSOR_OFFSETS'].mag_ofs_y, mav2.messages['SENSOR_OFFSETS'].mag_ofs_z, )) time.sleep(0.01) # 314M 326G # 160M 172G