/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_RangeFinder_PWM.h" #include #include extern const AP_HAL::HAL& hal; /* The constructor also initialises the rangefinder. */ AP_RangeFinder_PWM::AP_RangeFinder_PWM(RangeFinder::RangeFinder_State &_state, AP_RangeFinder_Params &_params, float &_estimated_terrain_height) : AP_RangeFinder_Backend(_state, _params), estimated_terrain_height(_estimated_terrain_height) { } /* There's no sensible way of detecting a PWM rangefinder as the pins are configurable */ bool AP_RangeFinder_PWM::detect() { return true; } // interrupt handler for reading pwm value void AP_RangeFinder_PWM::irq_handler(uint8_t pin, bool pin_high, uint32_t timestamp_us) { if (pin_high) { irq_pulse_start_us = timestamp_us; } else { if (irq_pulse_start_us != 0) { irq_value_us += timestamp_us - irq_pulse_start_us; irq_pulse_start_us = 0; irq_sample_count++; } } } // read - return last value measured by sensor bool AP_RangeFinder_PWM::get_reading(uint16_t &reading_cm) { // disable interrupts and grab state void *irqstate = hal.scheduler->disable_interrupts_save(); const uint32_t value_us = irq_value_us; const uint16_t sample_count = irq_sample_count; irq_value_us = 0; irq_sample_count = 0; hal.scheduler->restore_interrupts(irqstate); if (value_us == 0 || sample_count == 0) { return false; } reading_cm = value_us/(sample_count * 10); // correct for LidarLite. Parameter needed? Converts from decimetres -> cm here return true; } void AP_RangeFinder_PWM::check_pin() { if (params.pin == last_pin) { return; } // detach last one if (last_pin > 0) { if (!hal.gpio->detach_interrupt(last_pin)) { gcs().send_text(MAV_SEVERITY_WARNING, "RangeFinder_PWM: Failed to detach from pin %u", last_pin); // ignore this failure or the user may be stuck } } // set last pin to params.pin so we don't continually try to attach // to it if the attach is failing last_pin = params.pin; if (params.pin <= 0) { // don't need to install handler return; } // install interrupt handler on rising and falling edge hal.gpio->pinMode(params.pin, HAL_GPIO_INPUT); if (!hal.gpio->attach_interrupt( params.pin, FUNCTOR_BIND_MEMBER(&AP_RangeFinder_PWM::irq_handler, void, uint8_t, bool, uint32_t), AP_HAL::GPIO::INTERRUPT_BOTH)) { // failed to attach interrupt gcs().send_text(MAV_SEVERITY_WARNING, "RangeFinder_PWM: Failed to attach to pin %u", (unsigned int)params.pin); return; } } void AP_RangeFinder_PWM::check_stop_pin() { if (params.stop_pin == last_stop_pin) { return; } hal.gpio->pinMode(params.stop_pin, HAL_GPIO_OUTPUT); last_stop_pin = params.stop_pin; } void AP_RangeFinder_PWM::check_pins() { check_pin(); check_stop_pin(); } /* update the state of the sensor */ void AP_RangeFinder_PWM::update(void) { // check if pin has changed and configure interrupt handlers if required: check_pins(); if (last_pin <= 0) { // disabled (by configuration) return; } if (params.stop_pin != -1) { const bool oor = out_of_range(); if (oor) { if (!was_out_of_range) { // we are above the power saving range. Disable the sensor hal.gpio->write(params.stop_pin, false); set_status(RangeFinder::RangeFinder_NoData); state.distance_cm = 0; state.voltage_mv = 0; was_out_of_range = oor; } return; } // re-enable the sensor: if (!oor && was_out_of_range) { hal.gpio->write(params.stop_pin, true); was_out_of_range = oor; } } if (!get_reading(state.distance_cm)) { // failure; consider changing our state if (AP_HAL::millis() - state.last_reading_ms > 200) { set_status(RangeFinder::RangeFinder_NoData); } return; } // update range_valid state based on distance measured state.last_reading_ms = AP_HAL::millis(); update_status(); } // return true if we are beyond the power saving range bool AP_RangeFinder_PWM::out_of_range(void) const { return params.powersave_range > 0 && estimated_terrain_height > params.powersave_range; }