/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include extern const AP_HAL::HAL& hal; #ifndef BOARD_RSSI_DEFAULT #define BOARD_RSSI_DEFAULT 0 #endif #ifndef BOARD_RSSI_ANA_PIN #define BOARD_RSSI_ANA_PIN 0 #endif #ifndef BOARD_RSSI_ANA_PIN_HIGH #define BOARD_RSSI_ANA_PIN_HIGH 5.0f #endif const AP_Param::GroupInfo AP_RSSI::var_info[] = { // @Param: TYPE // @DisplayName: RSSI Type // @Description: Radio Receiver RSSI type. If your radio receiver supports RSSI of some kind, set it here, then set its associated RSSI_XXXXX parameters, if any. // @Values: 0:Disabled,1:AnalogPin,2:RCChannelPwmValue,3:ReceiverProtocol,4:PWMInputPin // @User: Standard AP_GROUPINFO_FLAGS("TYPE", 0, AP_RSSI, rssi_type, BOARD_RSSI_DEFAULT, AP_PARAM_FLAG_ENABLE), // @Param: ANA_PIN // @DisplayName: Receiver RSSI sensing pin // @Description: Pin used to read the RSSI voltage or PWM value // @Values: 8:V5 Nano,11:Pixracer,13:Pixhawk ADC4,14:Pixhawk ADC3,15:Pixhawk ADC6,15:Pixhawk2 ADC,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6,103:Pixhawk SBUS // @User: Standard AP_GROUPINFO("ANA_PIN", 1, AP_RSSI, rssi_analog_pin, BOARD_RSSI_ANA_PIN), // @Param: PIN_LOW // @DisplayName: RSSI pin's lowest voltage // @Description: RSSI pin's voltage received on the RSSI_ANA_PIN when the signal strength is the weakest. Some radio receivers put out inverted values so this value may be higher than RSSI_PIN_HIGH // @Units: V // @Increment: 0.01 // @Range: 0 5.0 // @User: Standard AP_GROUPINFO("PIN_LOW", 2, AP_RSSI, rssi_analog_pin_range_low, 0.0f), // @Param: PIN_HIGH // @DisplayName: RSSI pin's highest voltage // @Description: RSSI pin's voltage received on the RSSI_ANA_PIN when the signal strength is the strongest. Some radio receivers put out inverted values so this value may be lower than RSSI_PIN_LOW // @Units: V // @Increment: 0.01 // @Range: 0 5.0 // @User: Standard AP_GROUPINFO("PIN_HIGH", 3, AP_RSSI, rssi_analog_pin_range_high, BOARD_RSSI_ANA_PIN_HIGH), // @Param: CHANNEL // @DisplayName: Receiver RSSI channel number // @Description: The channel number where RSSI will be output by the radio receiver (5 and above). // @Range: 0 16 // @User: Standard AP_GROUPINFO("CHANNEL", 4, AP_RSSI, rssi_channel, 0), // @Param: CHAN_LOW // @DisplayName: RSSI PWM low value // @Description: PWM value that the radio receiver will put on the RSSI_CHANNEL or RSSI_ANA_PIN when the signal strength is the weakest. Some radio receivers output inverted values so this value may be lower than RSSI_CHAN_HIGH // @Units: PWM // @Range: 0 2000 // @User: Standard AP_GROUPINFO("CHAN_LOW", 5, AP_RSSI, rssi_channel_low_pwm_value, 1000), // @Param: CHAN_HIGH // @DisplayName: Receiver RSSI PWM high value // @Description: PWM value that the radio receiver will put on the RSSI_CHANNEL or RSSI_ANA_PIN when the signal strength is the strongest. Some radio receivers output inverted values so this value may be higher than RSSI_CHAN_LOW // @Units: PWM // @Range: 0 2000 // @User: Standard AP_GROUPINFO("CHAN_HIGH", 6, AP_RSSI, rssi_channel_high_pwm_value, 2000), AP_GROUPEND }; // Public // ------ // constructor AP_RSSI::AP_RSSI() { AP_Param::setup_object_defaults(this, var_info); if (_singleton) { AP_HAL::panic("Too many RSSI sensors"); } _singleton = this; } // destructor AP_RSSI::~AP_RSSI(void) { } /* * Get the AP_RSSI singleton */ AP_RSSI *AP_RSSI::get_singleton() { return _singleton; } // Initialize the rssi object and prepare it for use void AP_RSSI::init() { // a pin for reading the receiver RSSI voltage. The scaling by 0.25 // is to take the 0 to 1024 range down to an 8 bit range for MAVLink rssi_analog_source = hal.analogin->channel(ANALOG_INPUT_NONE); } // Read the receiver RSSI value as a float 0.0f - 1.0f. // 0.0 represents weakest signal, 1.0 represents maximum signal. float AP_RSSI::read_receiver_rssi() { switch (RssiType(rssi_type.get())) { case RssiType::TYPE_DISABLED: return 0.0f; case RssiType::ANALOG_PIN: return read_pin_rssi(); case RssiType::RC_CHANNEL_VALUE: return read_channel_rssi(); case RssiType::RECEIVER: { int16_t rssi = RC_Channels::get_receiver_rssi(); if (rssi != -1) { return rssi / 255.0; } return 0.0f; } case RssiType::PWM_PIN: return read_pwm_pin_rssi(); } // should never get to here return 0.0f; } // Read the receiver RSSI value as an 8-bit integer // 0 represents weakest signal, 255 represents maximum signal. uint8_t AP_RSSI::read_receiver_rssi_uint8() { return read_receiver_rssi() * 255; } // Private // ------- // read the RSSI value from an analog pin - returns float in range 0.0 to 1.0 float AP_RSSI::read_pin_rssi() { rssi_analog_source->set_pin(rssi_analog_pin); float current_analog_voltage = rssi_analog_source->voltage_average(); return scale_and_constrain_float_rssi(current_analog_voltage, rssi_analog_pin_range_low, rssi_analog_pin_range_high); } // read the RSSI value from a PWM value on a RC channel float AP_RSSI::read_channel_rssi() { RC_Channel *c = rc().channel(rssi_channel-1); if (c == nullptr) { return 0.0f; } uint16_t rssi_channel_value = c->get_radio_in(); float channel_rssi = scale_and_constrain_float_rssi(rssi_channel_value, rssi_channel_low_pwm_value, rssi_channel_high_pwm_value); return channel_rssi; } void AP_RSSI::check_pwm_pin_rssi() { if (rssi_analog_pin == pwm_state.last_rssi_analog_pin) { return; } // detach last one if (pwm_state.last_rssi_analog_pin) { if (!hal.gpio->detach_interrupt(pwm_state.last_rssi_analog_pin)) { gcs().send_text(MAV_SEVERITY_WARNING, "RSSI: Failed to detach from pin %u", pwm_state.last_rssi_analog_pin); // ignore this failure or the user may be stuck } } pwm_state.last_rssi_analog_pin = rssi_analog_pin; if (!rssi_analog_pin) { // don't need to install handler return; } // install interrupt handler on rising and falling edge hal.gpio->pinMode(rssi_analog_pin, HAL_GPIO_INPUT); if (!hal.gpio->attach_interrupt( rssi_analog_pin, FUNCTOR_BIND_MEMBER(&AP_RSSI::irq_handler, void, uint8_t, bool, uint32_t), AP_HAL::GPIO::INTERRUPT_BOTH)) { // failed to attach interrupt gcs().send_text(MAV_SEVERITY_WARNING, "RSSI: Failed to attach to pin %u", (unsigned int)rssi_analog_pin); return; } } // read the PWM value from a pin float AP_RSSI::read_pwm_pin_rssi() { // check if pin has changed and configure interrupt handlers if required: check_pwm_pin_rssi(); if (!pwm_state.last_rssi_analog_pin) { // disabled (either by configuration or failure to attach interrupt) return 0.0f; } // disable interrupts and grab state void *irqstate = hal.scheduler->disable_interrupts_save(); const uint32_t irq_value_us = pwm_state.irq_value_us; pwm_state.irq_value_us = 0; hal.scheduler->restore_interrupts(irqstate); const uint32_t now = AP_HAL::millis(); if (irq_value_us == 0) { // no reading; check for timeout: if (now - pwm_state.last_reading_ms > 1000) { // no reading for a second - something is broken pwm_state.rssi_value = 0.0f; } } else { // a new reading - convert pwm value to rssi value pwm_state.rssi_value = scale_and_constrain_float_rssi(irq_value_us, rssi_channel_low_pwm_value, rssi_channel_high_pwm_value); pwm_state.last_reading_ms = now; } return pwm_state.rssi_value; } // Scale and constrain a float rssi value to 0.0 to 1.0 range float AP_RSSI::scale_and_constrain_float_rssi(float current_rssi_value, float low_rssi_range, float high_rssi_range) { float rssi_value_range = fabsf(high_rssi_range - low_rssi_range); if (is_zero(rssi_value_range)) { // User range isn't meaningful, return 0 for RSSI (and avoid divide by zero) return 0.0f; } // Note that user-supplied ranges may be inverted and we accommodate that here. // (Some radio receivers put out inverted ranges for RSSI-type values). bool range_is_inverted = (high_rssi_range < low_rssi_range); // Constrain to the possible range - values outside are clipped to ends current_rssi_value = constrain_float(current_rssi_value, range_is_inverted ? high_rssi_range : low_rssi_range, range_is_inverted ? low_rssi_range : high_rssi_range); if (range_is_inverted) { // Swap values so we can treat them as low->high uniformly in the code that follows current_rssi_value = high_rssi_range + fabsf(current_rssi_value - low_rssi_range); std::swap(low_rssi_range, high_rssi_range); } // Scale the value down to a 0.0 - 1.0 range float rssi_value_scaled = (current_rssi_value - low_rssi_range) / rssi_value_range; // Make absolutely sure the value is clipped to the 0.0 - 1.0 range. This should handle things if the // value retrieved falls outside the user-supplied range. return constrain_float(rssi_value_scaled, 0.0f, 1.0f); } // interrupt handler for reading pwm value void AP_RSSI::irq_handler(uint8_t pin, bool pin_high, uint32_t timestamp_us) { if (pin_high) { pwm_state.pulse_start_us = timestamp_us; } else { if (pwm_state.pulse_start_us != 0) { pwm_state.irq_value_us = timestamp_us - pwm_state.pulse_start_us; pwm_state.pulse_start_us = 0; } } } AP_RSSI *AP_RSSI::_singleton = nullptr; namespace AP { AP_RSSI *rssi() { return AP_RSSI::get_singleton(); } };