#include "AC_Fence.h" #include #include extern const AP_HAL::HAL& hal; #if APM_BUILD_TYPE(APM_BUILD_APMrover2) #define AC_FENCE_TYPE_DEFAULT AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON #else #define AC_FENCE_TYPE_DEFAULT AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON #endif const AP_Param::GroupInfo AC_Fence::var_info[] = { // @Param: ENABLE // @DisplayName: Fence enable/disable // @Description: Allows you to enable (1) or disable (0) the fence functionality // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("ENABLE", 0, AC_Fence, _enabled, 0), // @Param: TYPE // @DisplayName: Fence Type // @Description: Enabled fence types held as bitmask // @Values: 0:None,1:Altitude,2:Circle,3:Altitude and Circle,4:Polygon,5:Altitude and Polygon,6:Circle and Polygon,7:All // @Bitmask: 0:Altitude,1:Circle,2:Polygon // @User: Standard AP_GROUPINFO("TYPE", 1, AC_Fence, _enabled_fences, AC_FENCE_TYPE_DEFAULT), // @Param: ACTION // @DisplayName: Fence Action // @Description: What action should be taken when fence is breached // @Values{Copter}: 0:Report Only,1:RTL or Land,2:Always Land,3:SmartRTL or RTL or Land,4:Brake or Land // @Values: 0:Report Only,1:RTL or Land // @User: Standard AP_GROUPINFO("ACTION", 2, AC_Fence, _action, AC_FENCE_ACTION_RTL_AND_LAND), // @Param: ALT_MAX // @DisplayName: Fence Maximum Altitude // @Description: Maximum altitude allowed before geofence triggers // @Units: m // @Range: 10 1000 // @Increment: 1 // @User: Standard AP_GROUPINFO_FRAME("ALT_MAX", 3, AC_Fence, _alt_max, AC_FENCE_ALT_MAX_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_SUB | AP_PARAM_FRAME_TRICOPTER | AP_PARAM_FRAME_HELI), // @Param: RADIUS // @DisplayName: Circular Fence Radius // @Description: Circle fence radius which when breached will cause an RTL // @Units: m // @Range: 30 10000 // @User: Standard AP_GROUPINFO("RADIUS", 4, AC_Fence, _circle_radius, AC_FENCE_CIRCLE_RADIUS_DEFAULT), // @Param: MARGIN // @DisplayName: Fence Margin // @Description: Distance that autopilot's should maintain from the fence to avoid a breach // @Units: m // @Range: 1 10 // @User: Standard AP_GROUPINFO("MARGIN", 5, AC_Fence, _margin, AC_FENCE_MARGIN_DEFAULT), // @Param: TOTAL // @DisplayName: Fence polygon point total // @Description: Number of polygon points saved in eeprom (do not update manually) // @Range: 1 20 // @User: Standard AP_GROUPINFO("TOTAL", 6, AC_Fence, _total, 0), // @Param: ALT_MIN // @DisplayName: Fence Minimum Altitude // @Description: Minimum altitude allowed before geofence triggers // @Units: m // @Range: -100 100 // @Increment: 1 // @User: Standard AP_GROUPINFO_FRAME("ALT_MIN", 7, AC_Fence, _alt_min, AC_FENCE_ALT_MIN_DEFAULT, AP_PARAM_FRAME_SUB), AP_GROUPEND }; /// Default constructor. AC_Fence::AC_Fence() { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (_singleton != nullptr) { AP_HAL::panic("Fence must be singleton"); } #endif _singleton = this; AP_Param::setup_object_defaults(this, var_info); } void AC_Fence::enable(bool value) { _enabled = value; if (!value) { clear_breach(AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON); } } /// get_enabled_fences - returns bitmask of enabled fences uint8_t AC_Fence::get_enabled_fences() const { if (!_enabled) { return 0; } return _enabled_fences; } // additional checks for the polygon fence: bool AC_Fence::pre_arm_check_polygon(const char* &fail_msg) const { if (!(_enabled_fences & AC_FENCE_TYPE_POLYGON)) { // not enabled; all good return true; } if (!_boundary_valid) { fail_msg = "Polygon boundary invalid"; return false; } return true; } // additional checks for the circle fence: bool AC_Fence::pre_arm_check_circle(const char* &fail_msg) const { if (_circle_radius < 0) { fail_msg = "Invalid FENCE_RADIUS value"; return false; } return true; } // additional checks for the alt fence: bool AC_Fence::pre_arm_check_alt(const char* &fail_msg) const { if (_alt_max < 0.0f) { fail_msg = "Invalid FENCE_ALT_MAX value"; return false; } return true; } /// pre_arm_check - returns true if all pre-takeoff checks have completed successfully bool AC_Fence::pre_arm_check(const char* &fail_msg) const { fail_msg = nullptr; // if not enabled or not fence set-up always return true if (!_enabled || !_enabled_fences) { return true; } // check no limits are currently breached if (_breached_fences) { fail_msg = "vehicle outside fence"; return false; } // if we have horizontal limits enabled, check we can get a // relative position from the AHRS if ((_enabled_fences & AC_FENCE_TYPE_CIRCLE) || (_enabled_fences & AC_FENCE_TYPE_POLYGON)) { Vector2f position; if (!AP::ahrs().get_relative_position_NE_home(position)) { fail_msg = "fence requires position"; return false; } } if (!pre_arm_check_polygon(fail_msg)) { return false; } if (!pre_arm_check_circle(fail_msg)) { return false; } if (!pre_arm_check_alt(fail_msg)) { return false; } // if we got this far everything must be ok return true; } bool AC_Fence::check_fence_alt_max() { // altitude fence check if (!(_enabled_fences & AC_FENCE_TYPE_ALT_MAX)) { // not enabled; no breach return false; } AP::ahrs().get_relative_position_D_home(_curr_alt); _curr_alt = -_curr_alt; // translate Down to Up // check if we are over the altitude fence if(_curr_alt >= _alt_max) { // record distance above breach _alt_max_breach_distance = _curr_alt - _alt_max; // check for a new breach or a breach of the backup fence if (!(_breached_fences & AC_FENCE_TYPE_ALT_MAX) || (!is_zero(_alt_max_backup) && _curr_alt >= _alt_max_backup)) { // new breach record_breach(AC_FENCE_TYPE_ALT_MAX); // create a backup fence 20m higher up _alt_max_backup = _curr_alt + AC_FENCE_ALT_MAX_BACKUP_DISTANCE; // new breach: return true; } // old breach: return false; } // not breached // clear alt breach if present if ((_breached_fences & AC_FENCE_TYPE_ALT_MAX) != 0) { clear_breach(AC_FENCE_TYPE_ALT_MAX); _alt_max_backup = 0.0f; _alt_max_breach_distance = 0.0f; } return false; } // check_fence_polygon - returns true if the polygon fence is freshly breached bool AC_Fence::check_fence_polygon() { const bool was_breached = _breached_fences & AC_FENCE_TYPE_POLYGON; const bool breached = polygon_fence_is_breached(); if (breached) { if (!was_breached) { record_breach(AC_FENCE_TYPE_POLYGON); return true; } return false; } if (was_breached) { clear_breach(AC_FENCE_TYPE_POLYGON); } return false; } bool AC_Fence::polygon_fence_is_breached() { if (!(_enabled_fences & AC_FENCE_TYPE_POLYGON)) { // not enabled; no breach return false; } // check consistency of number of points if (_boundary_num_points != _total) { // Fence is currently not completely loaded. Can't breach it?! load_polygon_from_eeprom(); return false; } if (!_boundary_valid) { // fence isn't valid - can't breach it?! return false; } // check if vehicle is outside the polygon fence Vector2f position; if (!AP::ahrs().get_relative_position_NE_origin(position)) { // we have no idea where we are; can't breach the fence return false; } position = position * 100.0f; // m to cm return _poly_loader.boundary_breached(position, _boundary_num_points, _boundary); } bool AC_Fence::check_fence_circle() { if (!(_enabled_fences & AC_FENCE_TYPE_CIRCLE)) { // not enabled; no breach return false; } Vector2f home; if (AP::ahrs().get_relative_position_NE_home(home)) { // we (may) remain breached if we can't update home _home_distance = home.length(); } // check if we are outside the fence if (_home_distance >= _circle_radius) { // record distance outside the fence _circle_breach_distance = _home_distance - _circle_radius; // check for a new breach or a breach of the backup fence if (!(_breached_fences & AC_FENCE_TYPE_CIRCLE) || (!is_zero(_circle_radius_backup) && _home_distance >= _circle_radius_backup)) { // new breach // create a backup fence 20m further out record_breach(AC_FENCE_TYPE_CIRCLE); _circle_radius_backup = _home_distance + AC_FENCE_CIRCLE_RADIUS_BACKUP_DISTANCE; return true; } return false; } // not currently breached // clear circle breach if present if (_breached_fences & AC_FENCE_TYPE_CIRCLE) { clear_breach(AC_FENCE_TYPE_CIRCLE); _circle_radius_backup = 0.0f; _circle_breach_distance = 0.0f; } return false; } /// check - returns bitmask of fence types breached (if any) uint8_t AC_Fence::check() { uint8_t ret = 0; // return immediately if disabled if (!_enabled || !_enabled_fences) { return 0; } // check if pilot is attempting to recover manually if (_manual_recovery_start_ms != 0) { // we ignore any fence breaches during the manual recovery period which is about 10 seconds if ((AP_HAL::millis() - _manual_recovery_start_ms) < AC_FENCE_MANUAL_RECOVERY_TIME_MIN) { return 0; } // recovery period has passed so reset manual recovery time // and continue with fence breach checks _manual_recovery_start_ms = 0; } // maximum altitude fence check if (check_fence_alt_max()) { ret |= AC_FENCE_TYPE_ALT_MAX; } // circle fence check if (check_fence_circle()) { ret |= AC_FENCE_TYPE_CIRCLE; } // polygon fence check if (check_fence_polygon()) { ret |= AC_FENCE_TYPE_POLYGON; } // return any new breaches that have occurred return ret; } // returns true if the destination is within fence (used to reject waypoints outside the fence) bool AC_Fence::check_destination_within_fence(const Location& loc) { // Altitude fence check if ((get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX)) { int32_t alt_above_home_cm; if (loc.get_alt_cm(Location::AltFrame::ABOVE_HOME, alt_above_home_cm)) { if ((alt_above_home_cm * 0.01f) > _alt_max) { return false; } } } // Circular fence check if ((get_enabled_fences() & AC_FENCE_TYPE_CIRCLE)) { if (AP::ahrs().get_home().get_distance(loc) > _circle_radius) { return false; } } // polygon fence check if ((get_enabled_fences() & AC_FENCE_TYPE_POLYGON) && _boundary_num_points > 0) { // check ekf has a good location Vector2f posNE; if (loc.get_vector_xy_from_origin_NE(posNE)) { if (_poly_loader.boundary_breached(posNE, _boundary_num_points, _boundary)) { return false; } } } return true; } /// record_breach - update breach bitmask, time and count void AC_Fence::record_breach(uint8_t fence_type) { // if we haven't already breached a limit, update the breach time if (!_breached_fences) { _breach_time = AP_HAL::millis(); } // update breach count if (_breach_count < 65500) { _breach_count++; } // update bitmask _breached_fences |= fence_type; } /// clear_breach - update breach bitmask, time and count void AC_Fence::clear_breach(uint8_t fence_type) { _breached_fences &= ~fence_type; } /// get_breach_distance - returns maximum distance in meters outside /// of the given fences. fence_type is a bitmask here. float AC_Fence::get_breach_distance(uint8_t fence_type) const { float max = 0.0f; if (fence_type & AC_FENCE_TYPE_ALT_MAX) { max = MAX(_alt_max_breach_distance, max); } if (fence_type & AC_FENCE_TYPE_CIRCLE) { max = MAX(_circle_breach_distance, max); } return max; } /// manual_recovery_start - caller indicates that pilot is re-taking manual control so fence should be disabled for 10 seconds /// has no effect if no breaches have occurred void AC_Fence::manual_recovery_start() { // return immediate if we haven't breached a fence if (!_breached_fences) { return; } // record time pilot began manual recovery _manual_recovery_start_ms = AP_HAL::millis(); } /// returns pointer to array of polygon points and num_points is filled in with the total number Vector2f* AC_Fence::get_boundary_points(uint16_t& num_points) const { // return array minus the first point which holds the return location if (_boundary == nullptr) { return nullptr; } if (!_boundary_valid) { return nullptr; } // minus one for return point, minus one for closing point // (_boundary_valid is not true unless we have a closing point AND // we have a minumum number of points) if (_boundary_num_points < 2) { return nullptr; } num_points = _boundary_num_points - 2; return &_boundary[1]; } /// returns true if we've breached the polygon boundary. simple passthrough to underlying _poly_loader object bool AC_Fence::boundary_breached(const Vector2f& location, uint16_t num_points, const Vector2f* points) const { return _poly_loader.boundary_breached(location, num_points, points); } /// handler for polygon fence messages with GCS void AC_Fence::handle_msg(GCS_MAVLINK &link, const mavlink_message_t &msg) { switch (msg.msgid) { // receive a fence point from GCS and store in EEPROM case MAVLINK_MSG_ID_FENCE_POINT: { mavlink_fence_point_t packet; mavlink_msg_fence_point_decode(&msg, &packet); if (!check_latlng(packet.lat,packet.lng)) { link.send_text(MAV_SEVERITY_WARNING, "Invalid fence point, lat or lng too large"); } else { Vector2l point; point.x = packet.lat*1.0e7f; point.y = packet.lng*1.0e7f; if (!_poly_loader.save_point_to_eeprom(packet.idx, point)) { link.send_text(MAV_SEVERITY_WARNING, "Failed to save polygon point, too many points?"); } else { // trigger reload of points _boundary_num_points = 0; } } break; } // send a fence point to GCS case MAVLINK_MSG_ID_FENCE_FETCH_POINT: { mavlink_fence_fetch_point_t packet; mavlink_msg_fence_fetch_point_decode(&msg, &packet); // attempt to retrieve from eeprom Vector2l point; if (_poly_loader.load_point_from_eeprom(packet.idx, point)) { mavlink_msg_fence_point_send(link.get_chan(), msg.sysid, msg.compid, packet.idx, _total, point.x*1.0e-7f, point.y*1.0e-7f); } else { link.send_text(MAV_SEVERITY_WARNING, "Bad fence point"); } break; } default: // do nothing break; } } /// load polygon points stored in eeprom into boundary array and perform validation bool AC_Fence::load_polygon_from_eeprom() { // check if we need to create array if (!_boundary_create_attempted) { _boundary = (Vector2f *)_poly_loader.create_point_array(sizeof(Vector2f)); _boundary_create_attempted = true; } // exit if we could not allocate RAM for the boundary if (_boundary == nullptr) { return false; } // get current location from EKF Location temp_loc; if (!AP::ahrs_navekf().get_location(temp_loc)) { return false; } struct Location ekf_origin {}; if (!AP::ahrs().get_origin(ekf_origin)) { return false; } // sanity check total _total = constrain_int16(_total, 0, _poly_loader.max_points()); // load each point from eeprom Vector2l temp_latlon; for (uint16_t index=0; index<_total; index++) { // load boundary point as lat/lon point if (!_poly_loader.load_point_from_eeprom(index, temp_latlon)) { return false; } // move into location structure and convert to offset from ekf origin temp_loc.lat = temp_latlon.x; temp_loc.lng = temp_latlon.y; _boundary[index] = ekf_origin.get_distance_NE(temp_loc) * 100.0f; } _boundary_num_points = _total; _boundary_update_ms = AP_HAL::millis(); // update validity of polygon _boundary_valid = _poly_loader.boundary_valid(_boundary_num_points, _boundary); return true; } // methods for mavlink SYS_STATUS message (send_sys_status) bool AC_Fence::sys_status_present() const { return _enabled; } bool AC_Fence::sys_status_enabled() const { if (!sys_status_present()) { return false; } if (_action == AC_FENCE_ACTION_REPORT_ONLY) { return false; } return true; } bool AC_Fence::sys_status_failed() const { if (!sys_status_present()) { // not failed if not present; can fail if present but not enabled return false; } if (get_breaches() != 0) { return true; } if (_enabled_fences & AC_FENCE_TYPE_POLYGON) { if (!_boundary_valid) { return true; } } if (_enabled_fences & AC_FENCE_TYPE_CIRCLE) { if (_circle_radius < 0) { return true; } } if (_enabled_fences & AC_FENCE_TYPE_ALT_MAX) { if (_alt_max < 0.0f) { return true; } } if ((_enabled_fences & AC_FENCE_TYPE_CIRCLE) || (_enabled_fences & AC_FENCE_TYPE_POLYGON)) { Vector2f position; if (!AP::ahrs().get_relative_position_NE_home(position)) { // both these fence types require position return true; } } return false; } // singleton instance AC_Fence *AC_Fence::_singleton; namespace AP { AC_Fence *fence() { return AC_Fence::get_singleton(); } }