#include "Sub.h" /* * control_auto.cpp * Contains the mission, waypoint navigation and NAV_CMD item implementation * * While in the auto flight mode, navigation or do/now commands can be run. * Code in this file implements the navigation commands */ // auto_init - initialise auto controller bool Sub::auto_init() { if (!position_ok() || mission.num_commands() < 2) { return false; } auto_mode = Auto_Loiter; // stop ROI from carrying over from previous runs of the mission // To-Do: reset the yaw as part of auto_wp_start when the previous command was not a wp command to remove the need for this special ROI check if (auto_yaw_mode == AUTO_YAW_ROI) { set_auto_yaw_mode(AUTO_YAW_HOLD); } // initialise waypoint and spline controller wp_nav.wp_and_spline_init(); // clear guided limits guided_limit_clear(); // start/resume the mission (based on MIS_RESTART parameter) mission.start_or_resume(); return true; } // auto_run - runs the appropriate auto controller // according to the current auto_mode // should be called at 100hz or more void Sub::auto_run() { mission.update(); // call the correct auto controller switch (auto_mode) { case Auto_WP: case Auto_CircleMoveToEdge: auto_wp_run(); break; case Auto_Circle: auto_circle_run(); break; case Auto_Spline: auto_spline_run(); break; case Auto_NavGuided: #if NAV_GUIDED == ENABLED auto_nav_guided_run(); #endif break; case Auto_Loiter: auto_loiter_run(); break; case Auto_TerrainRecover: auto_terrain_recover_run(); break; } } // auto_wp_start - initialises waypoint controller to implement flying to a particular destination void Sub::auto_wp_start(const Vector3f& destination) { auto_mode = Auto_WP; // initialise wpnav (no need to check return status because terrain data is not used) wp_nav.set_wp_destination(destination, false); // initialise yaw // To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI if (auto_yaw_mode != AUTO_YAW_ROI) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } } // auto_wp_start - initialises waypoint controller to implement flying to a particular destination void Sub::auto_wp_start(const Location& dest_loc) { auto_mode = Auto_WP; // send target to waypoint controller if (!wp_nav.set_wp_destination(dest_loc)) { // failure to set destination can only be because of missing terrain data failsafe_terrain_on_event(); return; } // initialise yaw // To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI if (auto_yaw_mode != AUTO_YAW_ROI) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } } // auto_wp_run - runs the auto waypoint controller // called by auto_run at 100hz or more void Sub::auto_wp_run() { // if not armed set throttle to zero and exit immediately if (!motors.armed()) { // To-Do: reset waypoint origin to current location because vehicle is probably on the ground so we don't want it lurching left or right on take-off // (of course it would be better if people just used take-off) // call attitude controller // Sub vehicles do not stabilize roll/pitch/yaw when disarmed motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); attitude_control.set_throttle_out(0,true,g.throttle_filt); attitude_control.relax_attitude_controllers(); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.pilot_input) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // set motors to full range motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint controller // TODO logic for terrain tracking target going below fence limit // TODO implement waypoint radius individually for each waypoint based on cmd.p2 // TODO fix auto yaw heading to switch to something appropriate when mission complete and switches to loiter failsafe_terrain_set_status(wp_nav.update_wpnav()); /////////////////////// // update xy outputs // float lateral_out, forward_out; translate_wpnav_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control.update_z_controller(); //////////////////////////// // update attitude output // // get pilot desired lean angles float target_roll, target_pitch; get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max); // call attitude controller if (auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate); } else { // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, get_auto_heading(), true); } } // auto_spline_start - initialises waypoint controller to implement flying to a particular destination using the spline controller // seg_end_type can be SEGMENT_END_STOP, SEGMENT_END_STRAIGHT or SEGMENT_END_SPLINE. If Straight or Spline the next_destination should be provided void Sub::auto_spline_start(const Location& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Location& next_destination) { auto_mode = Auto_Spline; // initialise wpnav if (!wp_nav.set_spline_destination(destination, stopped_at_start, seg_end_type, next_destination)) { // failure to set destination can only be because of missing terrain data failsafe_terrain_on_event(); return; } // initialise yaw // To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI if (auto_yaw_mode != AUTO_YAW_ROI) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } } // auto_spline_run - runs the auto spline controller // called by auto_run at 100hz or more void Sub::auto_spline_run() { // if not armed set throttle to zero and exit immediately if (!motors.armed()) { // To-Do: reset waypoint origin to current location because vehicle is probably on the ground so we don't want it lurching left or right on take-off // (of course it would be better if people just used take-off) // Sub vehicles do not stabilize roll/pitch/yaw when disarmed motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); attitude_control.set_throttle_out(0,true,g.throttle_filt); attitude_control.relax_attitude_controllers(); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.pilot_input) { // get pilot's desired yaw rat target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // set motors to full range motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint controller wp_nav.update_spline(); float lateral_out, forward_out; translate_wpnav_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control.update_z_controller(); // get pilot desired lean angles float target_roll, target_pitch; get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max); // call attitude controller if (auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate); } else { // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, get_auto_heading(), true); } } // auto_circle_movetoedge_start - initialise waypoint controller to move to edge of a circle with it's center at the specified location // we assume the caller has set the circle's circle with circle_nav.set_center() // we assume the caller has performed all required GPS_ok checks void Sub::auto_circle_movetoedge_start(const Location &circle_center, float radius_m) { // convert location to vector from ekf origin Vector3f circle_center_neu; if (!circle_center.get_vector_from_origin_NEU(circle_center_neu)) { // default to current position and log error circle_center_neu = inertial_nav.get_position(); AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_CIRCLE_INIT); } circle_nav.set_center(circle_center_neu); // set circle radius if (!is_zero(radius_m)) { circle_nav.set_radius(radius_m * 100.0f); } // check our distance from edge of circle Vector3f circle_edge_neu; circle_nav.get_closest_point_on_circle(circle_edge_neu); float dist_to_edge = (inertial_nav.get_position() - circle_edge_neu).length(); // if more than 3m then fly to edge if (dist_to_edge > 300.0f) { // set the state to move to the edge of the circle auto_mode = Auto_CircleMoveToEdge; // convert circle_edge_neu to Location Location circle_edge(circle_edge_neu); // convert altitude to same as command circle_edge.set_alt_cm(circle_center.alt, circle_center.get_alt_frame()); // initialise wpnav to move to edge of circle if (!wp_nav.set_wp_destination(circle_edge)) { // failure to set destination can only be because of missing terrain data failsafe_terrain_on_event(); } // if we are outside the circle, point at the edge, otherwise hold yaw const Vector3f &curr_pos = inertial_nav.get_position(); float dist_to_center = norm(circle_center_neu.x - curr_pos.x, circle_center_neu.y - curr_pos.y); if (dist_to_center > circle_nav.get_radius() && dist_to_center > 500) { set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } else { // vehicle is within circle so hold yaw to avoid spinning as we move to edge of circle set_auto_yaw_mode(AUTO_YAW_HOLD); } } else { auto_circle_start(); } } // auto_circle_start - initialises controller to fly a circle in AUTO flight mode // assumes that circle_nav object has already been initialised with circle center and radius void Sub::auto_circle_start() { auto_mode = Auto_Circle; // initialise circle controller circle_nav.init(circle_nav.get_center()); } // auto_circle_run - circle in AUTO flight mode // called by auto_run at 100hz or more void Sub::auto_circle_run() { // call circle controller circle_nav.update(); float lateral_out, forward_out; translate_circle_nav_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); // call z-axis position controller pos_control.update_z_controller(); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), circle_nav.get_yaw(), true); } #if NAV_GUIDED == ENABLED // auto_nav_guided_start - hand over control to external navigation controller in AUTO mode void Sub::auto_nav_guided_start() { auto_mode = Auto_NavGuided; // call regular guided flight mode initialisation guided_init(true); // initialise guided start time and position as reference for limit checking guided_limit_init_time_and_pos(); } // auto_nav_guided_run - allows control by external navigation controller // called by auto_run at 100hz or more void Sub::auto_nav_guided_run() { // call regular guided flight mode run function guided_run(); } #endif // NAV_GUIDED // auto_loiter_start - initialises loitering in auto mode // returns success/failure because this can be called by exit_mission bool Sub::auto_loiter_start() { // return failure if GPS is bad if (!position_ok()) { return false; } auto_mode = Auto_Loiter; Vector3f origin = inertial_nav.get_position(); // calculate stopping point Vector3f stopping_point; pos_control.get_stopping_point_xy(stopping_point); pos_control.get_stopping_point_z(stopping_point); // initialise waypoint controller target to stopping point wp_nav.set_wp_origin_and_destination(origin, stopping_point); // hold yaw at current heading set_auto_yaw_mode(AUTO_YAW_HOLD); return true; } // auto_loiter_run - loiter in AUTO flight mode // called by auto_run at 100hz or more void Sub::auto_loiter_run() { // if not armed set throttle to zero and exit immediately if (!motors.armed()) { motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); // Sub vehicles do not stabilize roll/pitch/yaw when disarmed attitude_control.set_throttle_out(0,true,g.throttle_filt); attitude_control.relax_attitude_controllers(); return; } // accept pilot input of yaw float target_yaw_rate = 0; if (!failsafe.pilot_input) { target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); } // set motors to full range motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint and z-axis position controller failsafe_terrain_set_status(wp_nav.update_wpnav()); /////////////////////// // update xy outputs // float lateral_out, forward_out; translate_wpnav_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control.update_z_controller(); // get pilot desired lean angles float target_roll, target_pitch; get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate); } // get_default_auto_yaw_mode - returns auto_yaw_mode based on WP_YAW_BEHAVIOR parameter // set rtl parameter to true if this is during an RTL uint8_t Sub::get_default_auto_yaw_mode(bool rtl) { switch (g.wp_yaw_behavior) { case WP_YAW_BEHAVIOR_NONE: return AUTO_YAW_HOLD; break; case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL: if (rtl) { return AUTO_YAW_HOLD; } else { return AUTO_YAW_LOOK_AT_NEXT_WP; } break; case WP_YAW_BEHAVIOR_LOOK_AHEAD: return AUTO_YAW_LOOK_AHEAD; break; case WP_YAW_BEHAVIOR_CORRECT_XTRACK: return AUTO_YAW_CORRECT_XTRACK; break; case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP: default: return AUTO_YAW_LOOK_AT_NEXT_WP; break; } } // set_auto_yaw_mode - sets the yaw mode for auto void Sub::set_auto_yaw_mode(uint8_t yaw_mode) { // return immediately if no change if (auto_yaw_mode == yaw_mode) { return; } auto_yaw_mode = yaw_mode; // perform initialisation switch (auto_yaw_mode) { case AUTO_YAW_LOOK_AT_NEXT_WP: // wpnav will initialise heading when wpnav's set_destination method is called break; case AUTO_YAW_ROI: // point towards a location held in yaw_look_at_WP yaw_look_at_WP_bearing = ahrs.yaw_sensor; break; case AUTO_YAW_LOOK_AT_HEADING: // keep heading pointing in the direction held in yaw_look_at_heading // caller should set the yaw_look_at_heading break; case AUTO_YAW_LOOK_AHEAD: // Commanded Yaw to automatically look ahead. yaw_look_ahead_bearing = ahrs.yaw_sensor; break; case AUTO_YAW_RESETTOARMEDYAW: // initial_armed_bearing will be set during arming so no init required break; } } // set_auto_yaw_look_at_heading - sets the yaw look at heading for auto mode void Sub::set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, uint8_t relative_angle) { // get current yaw target int32_t curr_yaw_target = attitude_control.get_att_target_euler_cd().z; // get final angle, 1 = Relative, 0 = Absolute if (relative_angle == 0) { // absolute angle yaw_look_at_heading = wrap_360_cd(angle_deg * 100); } else { // relative angle if (direction < 0) { angle_deg = -angle_deg; } yaw_look_at_heading = wrap_360_cd((angle_deg*100+curr_yaw_target)); } // get turn speed // TODO actually implement this, right now, yaw_look_at_heading_slew is unused // see AP_Float _slew_yaw in AC_AttitudeControl if (is_zero(turn_rate_dps)) { // default to regular auto slew rate yaw_look_at_heading_slew = AUTO_YAW_SLEW_RATE; } else { int32_t turn_rate = (wrap_180_cd(yaw_look_at_heading - curr_yaw_target) / 100) / turn_rate_dps; yaw_look_at_heading_slew = constrain_int32(turn_rate, 1, 360); // deg / sec } // set yaw mode set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING); // TO-DO: restore support for clockwise and counter clockwise rotation held in cmd.content.yaw.direction. 1 = clockwise, -1 = counterclockwise } // set_auto_yaw_roi - sets the yaw to look at roi for auto mode void Sub::set_auto_yaw_roi(const Location &roi_location) { // if location is zero lat, lon and altitude turn off ROI if (roi_location.alt == 0 && roi_location.lat == 0 && roi_location.lng == 0) { // set auto yaw mode back to default assuming the active command is a waypoint command. A more sophisticated method is required to ensure we return to the proper yaw control for the active command set_auto_yaw_mode(get_default_auto_yaw_mode(false)); #if MOUNT == ENABLED // switch off the camera tracking if enabled if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { camera_mount.set_mode_to_default(); } #endif // MOUNT == ENABLED } else { #if MOUNT == ENABLED // check if mount type requires us to rotate the quad if (!camera_mount.has_pan_control()) { roi_WP = pv_location_to_vector(roi_location); set_auto_yaw_mode(AUTO_YAW_ROI); } // send the command to the camera mount camera_mount.set_roi_target(roi_location); // TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below) // 0: do nothing // 1: point at next waypoint // 2: point at a waypoint taken from WP# parameter (2nd parameter?) // 3: point at a location given by alt, lon, lat parameters // 4: point at a target given a target id (can't be implemented) #else // if we have no camera mount aim the quad at the location roi_WP = pv_location_to_vector(roi_location); set_auto_yaw_mode(AUTO_YAW_ROI); #endif // MOUNT == ENABLED } } // get_auto_heading - returns target heading depending upon auto_yaw_mode // 100hz update rate float Sub::get_auto_heading() { switch (auto_yaw_mode) { case AUTO_YAW_ROI: // point towards a location held in roi_WP return get_roi_yaw(); break; case AUTO_YAW_LOOK_AT_HEADING: // keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed return yaw_look_at_heading; break; case AUTO_YAW_LOOK_AHEAD: // Commanded Yaw to automatically look ahead. return get_look_ahead_yaw(); break; case AUTO_YAW_RESETTOARMEDYAW: // changes yaw to be same as when quad was armed return initial_armed_bearing; break; case AUTO_YAW_CORRECT_XTRACK: { // TODO return current yaw if not in appropriate mode // Bearing of current track (centidegrees) float track_bearing = get_bearing_cd(wp_nav.get_wp_origin(), wp_nav.get_wp_destination()); // Bearing from current position towards intermediate position target (centidegrees) float desired_angle = pos_control.get_bearing_to_target(); float angle_error = wrap_180_cd(desired_angle - track_bearing); float angle_limited = constrain_float(angle_error, -g.xtrack_angle_limit * 100.0f, g.xtrack_angle_limit * 100.0f); return wrap_360_cd(track_bearing + angle_limited); } break; case AUTO_YAW_LOOK_AT_NEXT_WP: default: // point towards next waypoint. // we don't use wp_bearing because we don't want the vehicle to turn too much during flight return wp_nav.get_yaw(); break; } } // Return true if it is possible to recover from a rangefinder failure bool Sub::auto_terrain_recover_start() { // Check rangefinder status to see if recovery is possible switch (rangefinder.status_orient(ROTATION_PITCH_270)) { case RangeFinder::RangeFinder_OutOfRangeLow: case RangeFinder::RangeFinder_OutOfRangeHigh: // RangeFinder_Good if just one valid sample was obtained recently, but ::rangefinder_state.alt_healthy // requires several consecutive valid readings for wpnav to accept rangefinder data case RangeFinder::RangeFinder_Good: auto_mode = Auto_TerrainRecover; break; // Not connected or no data default: return false; // Rangefinder is not connected, or has stopped responding } // Initialize recovery timeout time fs_terrain_recover_start_ms = AP_HAL::millis(); // Stop mission mission.stop(); // Reset xy target loiter_nav.clear_pilot_desired_acceleration(); loiter_nav.init_target(); // Reset z axis controller pos_control.relax_alt_hold_controllers(motors.get_throttle_hover()); // initialize vertical speeds and leash lengths pos_control.set_max_speed_z(wp_nav.get_default_speed_down(), wp_nav.get_default_speed_up()); pos_control.set_max_accel_z(wp_nav.get_accel_z()); // Reset vertical position and velocity targets pos_control.set_alt_target(inertial_nav.get_altitude()); pos_control.set_desired_velocity_z(inertial_nav.get_velocity_z()); gcs().send_text(MAV_SEVERITY_WARNING, "Attempting auto failsafe recovery"); return true; } // Attempt recovery from terrain failsafe // If recovery is successful resume mission // If recovery fails revert to failsafe action void Sub::auto_terrain_recover_run() { float target_climb_rate = 0; static uint32_t rangefinder_recovery_ms = 0; // if not armed set throttle to zero and exit immediately if (!motors.armed()) { motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); attitude_control.set_throttle_out(0,true,g.throttle_filt); attitude_control.relax_attitude_controllers(); return; } switch (rangefinder.status_orient(ROTATION_PITCH_270)) { case RangeFinder::RangeFinder_OutOfRangeLow: target_climb_rate = wp_nav.get_default_speed_up(); rangefinder_recovery_ms = 0; break; case RangeFinder::RangeFinder_OutOfRangeHigh: target_climb_rate = wp_nav.get_default_speed_down(); rangefinder_recovery_ms = 0; break; case RangeFinder::RangeFinder_Good: // exit on success (recovered rangefinder data) target_climb_rate = 0; // Attempt to hold current depth if (rangefinder_state.alt_healthy) { // Start timer as soon as rangefinder is healthy if (rangefinder_recovery_ms == 0) { rangefinder_recovery_ms = AP_HAL::millis(); pos_control.relax_alt_hold_controllers(motors.get_throttle_hover()); // Reset alt hold targets } // 1.5 seconds of healthy rangefinder means we can resume mission with terrain enabled if (AP_HAL::millis() > rangefinder_recovery_ms + 1500) { gcs().send_text(MAV_SEVERITY_INFO, "Terrain failsafe recovery successful!"); failsafe_terrain_set_status(true); // Reset failsafe timers failsafe.terrain = false; // Clear flag auto_mode = Auto_Loiter; // Switch back to loiter for next iteration mission.resume(); // Resume mission rangefinder_recovery_ms = 0; // Reset for subsequent recoveries } } break; // Not connected, or no data default: // Terrain failsafe recovery has failed, terrain data is not available // and rangefinder is not connected, or has stopped responding gcs().send_text(MAV_SEVERITY_CRITICAL, "Terrain failsafe recovery failure: No Rangefinder!"); failsafe_terrain_act(); rangefinder_recovery_ms = 0; return; } // exit on failure (timeout) if (AP_HAL::millis() > fs_terrain_recover_start_ms + FS_TERRAIN_RECOVER_TIMEOUT_MS) { // Recovery has failed, revert to failsafe action gcs().send_text(MAV_SEVERITY_CRITICAL, "Terrain failsafe recovery timeout!"); failsafe_terrain_act(); } // run loiter controller loiter_nav.update(); /////////////////////// // update xy targets // float lateral_out, forward_out; translate_wpnav_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); ///////////////////// // update z target // pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, true); pos_control.update_z_controller(); //////////////////////////// // update angular targets // float target_roll = 0; float target_pitch = 0; // convert pilot input to lean angles // To-Do: convert get_pilot_desired_lean_angles to return angles as floats get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max); float target_yaw_rate = 0; // call attitude controller attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate); }