/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // ArduSub scheduling, originally copied from ArduCopter #include "Sub.h" #define SCHED_TASK(func, rate_hz, max_time_micros) SCHED_TASK_CLASS(Sub, &sub, func, rate_hz, max_time_micros) /* scheduler table for fast CPUs - all regular tasks apart from the fast_loop() should be listed here, along with how often they should be called (in hz) and the maximum time they are expected to take (in microseconds) */ const AP_Scheduler::Task Sub::scheduler_tasks[] = { SCHED_TASK(fifty_hz_loop, 50, 75), SCHED_TASK(update_GPS, 50, 200), #if OPTFLOW == ENABLED SCHED_TASK_CLASS(OpticalFlow, &sub.optflow, update, 200, 160), #endif SCHED_TASK(update_batt_compass, 10, 120), SCHED_TASK(read_rangefinder, 20, 100), SCHED_TASK(update_altitude, 10, 100), SCHED_TASK(three_hz_loop, 3, 75), SCHED_TASK(update_turn_counter, 10, 50), SCHED_TASK_CLASS(AP_Baro, &sub.barometer, accumulate, 50, 90), SCHED_TASK_CLASS(AP_Notify, &sub.notify, update, 50, 90), SCHED_TASK(one_hz_loop, 1, 100), SCHED_TASK_CLASS(GCS, (GCS*)&sub._gcs, update_receive, 400, 180), SCHED_TASK_CLASS(GCS, (GCS*)&sub._gcs, update_send, 200, 800), #if MOUNT == ENABLED SCHED_TASK_CLASS(AP_Mount, &sub.camera_mount, update, 50, 75), #endif #if CAMERA == ENABLED SCHED_TASK_CLASS(AP_Camera, &sub.camera, update_trigger, 50, 75), #endif SCHED_TASK(ten_hz_logging_loop, 10, 350), SCHED_TASK(twentyfive_hz_logging, 25, 110), SCHED_TASK_CLASS(AP_Logger, &sub.logger, periodic_tasks, 400, 300), SCHED_TASK_CLASS(AP_InertialSensor, &sub.ins, periodic, 400, 50), SCHED_TASK_CLASS(AP_Scheduler, &sub.scheduler, update_logging, 0.1, 75), #if RPM_ENABLED == ENABLED SCHED_TASK(rpm_update, 10, 200), #endif SCHED_TASK_CLASS(Compass, &sub.compass, cal_update, 100, 100), SCHED_TASK(accel_cal_update, 10, 100), SCHED_TASK(terrain_update, 10, 100), #if GRIPPER_ENABLED == ENABLED SCHED_TASK_CLASS(AP_Gripper, &sub.g2.gripper, update, 10, 75), #endif #ifdef USERHOOK_FASTLOOP SCHED_TASK(userhook_FastLoop, 100, 75), #endif #ifdef USERHOOK_50HZLOOP SCHED_TASK(userhook_50Hz, 50, 75), #endif #ifdef USERHOOK_MEDIUMLOOP SCHED_TASK(userhook_MediumLoop, 15, 75), #endif #ifdef USERHOOK_SLOWLOOP SCHED_TASK(userhook_SlowLoop, 3.3, 75), #endif #ifdef USERHOOK_SUPERSLOWLOOP SCHED_TASK(userhook_SuperSlowLoop, 1, 75), #endif }; constexpr int8_t Sub::_failsafe_priorities[5]; void Sub::setup() { // Load the default values of variables listed in var_info[]s AP_Param::setup_sketch_defaults(); init_ardupilot(); chan_adc= hal.analogin->channel(0); // initialise the main loop scheduler scheduler.init(&scheduler_tasks[0], ARRAY_SIZE(scheduler_tasks), MASK_LOG_PM); } void Sub::loop() { scheduler.loop(); G_Dt = scheduler.get_loop_period_s(); } // Main loop - 400hz void Sub::fast_loop() { // update INS immediately to get current gyro data populated ins.update(); //don't run rate controller in manual or motordetection modes if (control_mode != MANUAL && control_mode != MOTOR_DETECT&& control_mode != CLEAN) { // run low level rate controllers that only require IMU data attitude_control.rate_controller_run(); } // send outputs to the motors library motors_output(); // run EKF state estimator (expensive) // -------------------- read_AHRS(); // Inertial Nav // -------------------- read_inertia(); // check if ekf has reset target heading check_ekf_yaw_reset(); // run the attitude controllers update_flight_mode(); //motor_toCan(); // update home from EKF if necessary update_home_from_EKF(); // check if we've reached the surface or bottom update_surface_and_bottom_detector(); #if MOUNT == ENABLED // camera mount's fast update camera_mount.update_fast(); #endif // log sensor health if (should_log(MASK_LOG_ANY)) { Log_Sensor_Health(); } } // 50 Hz tasks void Sub::fifty_hz_loop() { // check pilot input failsafe failsafe_pilot_input_check(); failsafe_crash_check(); failsafe_ekf_check(); failsafe_sensors_check(); // Update rc input/output rc().read_input(); SRV_Channels::output_ch_all(); } // update_batt_compass - read battery and compass // should be called at 10hz void Sub::update_batt_compass() { // read battery before compass because it may be used for motor interference compensation battery.read(); if (AP::compass().enabled()) { // update compass with throttle value - used for compassmot compass.set_throttle(motors.get_throttle()); compass.read(); } } // ten_hz_logging_loop // should be run at 10hz void Sub::ten_hz_logging_loop() { // log attitude data if we're not already logging at the higher rate if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_Attitude(); logger.Write_Rate(&ahrs_view, motors, attitude_control, pos_control); if (should_log(MASK_LOG_PID)){ /*attitude_control.get_rate_roll_pid().get_pid_info().P = channel_forward->norm_input(); attitude_control.get_rate_roll_pid().get_pid_info().I = channel_lateral->norm_input(); attitude_control.get_rate_roll_pid().get_pid_info().D = channel_yaw->norm_input(); attitude_control.get_rate_roll_pid().get_pid_info().error = channel_throttle->norm_input(); attitude_control.get_rate_roll_pid().get_pid_info().target = (float)PressLevel_f*0.1;*/ logger.Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info()); logger.Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info()); logger.Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info()); logger.Write_PID(LOG_PIDA_MSG, pos_control.get_accel_z_pid().get_pid_info()); } } if (should_log(MASK_LOG_MOTBATT)) { Log_Write_MotBatt(); } if (should_log(MASK_LOG_RCIN)) { logger.Write_RCIN(); } if (should_log(MASK_LOG_RCOUT)) { logger.Write_RCOUT(); } if (should_log(MASK_LOG_NTUN) && mode_requires_GPS(control_mode)) { pos_control.write_log(); } if (should_log(MASK_LOG_IMU) || should_log(MASK_LOG_IMU_FAST) || should_log(MASK_LOG_IMU_RAW)) { logger.Write_Vibration(); } if (should_log(MASK_LOG_CTUN)) { attitude_control.control_monitor_log(); } } // twentyfive_hz_logging_loop // should be run at 25hz void Sub::twentyfive_hz_logging() { if (should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_Attitude(); logger.Write_Rate(&ahrs_view, motors, attitude_control, pos_control); if (should_log(MASK_LOG_PID)) { logger.Write_PID(LOG_PIDR_MSG, attitude_control.get_rate_roll_pid().get_pid_info()); logger.Write_PID(LOG_PIDP_MSG, attitude_control.get_rate_pitch_pid().get_pid_info()); logger.Write_PID(LOG_PIDY_MSG, attitude_control.get_rate_yaw_pid().get_pid_info()); logger.Write_PID(LOG_PIDA_MSG, pos_control.get_accel_z_pid().get_pid_info()); } } // log IMU data if we're not already logging at the higher rate if (should_log(MASK_LOG_IMU) && !should_log(MASK_LOG_IMU_RAW)) { logger.Write_IMU(); } } // three_hz_loop - 3.3hz loop void Sub::three_hz_loop() { leak_detector.update(); failsafe_leak_check(); failsafe_internal_pressure_check(); failsafe_internal_temperature_check(); // check if we've lost contact with the ground station failsafe_gcs_check(); // check if we've lost terrain data failsafe_terrain_check(); #if AC_FENCE == ENABLED // check if we have breached a fence fence_check(); #endif // AC_FENCE_ENABLED ServoRelayEvents.update_events(); } // one_hz_loop - runs at 1Hz void Sub::one_hz_loop() { bool arm_check = arming.pre_arm_checks(false); ap.pre_arm_check = arm_check; AP_Notify::flags.pre_arm_check = arm_check; AP_Notify::flags.pre_arm_gps_check = position_ok(); AP_Notify::flags.flying = motors.armed(); if (should_log(MASK_LOG_ANY)) { Log_Write_Data(DATA_AP_STATE, ap.value); } if (!motors.armed()) { // make it possible to change ahrs orientation at runtime during initial config ahrs.update_orientation(); // set all throttle channel settings motors.set_throttle_range(channel_throttle->get_radio_min(), channel_throttle->get_radio_max()); } // update assigned functions and enable auxiliary servos SRV_Channels::enable_aux_servos(); // update position controller alt limits update_poscon_alt_max(); // log terrain data terrain_logging(); // need to set "likely flying" when armed to allow for compass // learning to run ahrs.set_likely_flying(hal.util->get_soft_armed()); } // called at 50hz void Sub::update_GPS() { static uint32_t last_gps_reading[GPS_MAX_INSTANCES]; // time of last gps message bool gps_updated = false; gps.update(); // log after every gps message for (uint8_t i=0; i tells AHRS to skip INS update as we have already done it in fast_loop() ahrs.update(true); ahrs_view.update(true); } // read baro and rangefinder altitude at 10hz void Sub::update_altitude() { // read in baro altitude read_barometer(); pos_control.calculate_rate(0.1); if (should_log(MASK_LOG_CTUN)) { Log_Write_Control_Tuning(); } } bool Sub::control_check_barometer() { #if CONFIG_HAL_BOARD != HAL_BOARD_SITL if (!ap.depth_sensor_present) { // can't hold depth without a depth sensor gcs().send_text(MAV_SEVERITY_WARNING, "Depth sensor is not connected."); return false; } else if (failsafe.sensor_health) { gcs().send_text(MAV_SEVERITY_WARNING, "Depth sensor error."); return false; } #endif return true; } AP_HAL_MAIN_CALLBACKS(&sub);