123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- /*
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- /*
- rover simulator class
- */
- #include "SIM_Rover.h"
- #include <string.h>
- #include <stdio.h>
- namespace SITL {
- SimRover::SimRover(const char *frame_str) :
- Aircraft(frame_str),
- max_speed(20),
- max_accel(10),
- max_wheel_turn(35),
- turning_circle(1.8),
- skid_turn_rate(140), // degrees/sec
- skid_steering(false)
- {
- skid_steering = strstr(frame_str, "skid") != nullptr;
- if (skid_steering) {
- printf("SKID Steering Rover Simulation Started\n");
- // these are taken from a 6V wild thumper with skid steering,
- // with a sabertooth controller
- max_accel = 14;
- max_speed = 4;
- }
- }
- /*
- return turning circle (diameter) in meters for steering angle proportion in degrees
- */
- float SimRover::turn_circle(float steering)
- {
- if (fabsf(steering) < 1.0e-6) {
- return 0;
- }
- return turning_circle * sinf(radians(max_wheel_turn)) / sinf(radians(steering*max_wheel_turn));
- }
- /*
- return yaw rate in degrees/second given steering_angle and speed
- */
- float SimRover::calc_yaw_rate(float steering, float speed)
- {
- if (skid_steering) {
- return steering * skid_turn_rate;
- }
- if (fabsf(steering) < 1.0e-6 or fabsf(speed) < 1.0e-6) {
- return 0;
- }
- float d = turn_circle(steering);
- float c = M_PI * d;
- float t = c / speed;
- float rate = 360.0f / t;
- return rate;
- }
- /*
- return lateral acceleration in m/s/s
- */
- float SimRover::calc_lat_accel(float steering_angle, float speed)
- {
- float yaw_rate = calc_yaw_rate(steering_angle, speed);
- float accel = radians(yaw_rate) * speed;
- return accel;
- }
- /*
- update the rover simulation by one time step
- */
- void SimRover::update(const struct sitl_input &input)
- {
- float steering, throttle;
- // if in skid steering mode the steering and throttle values are used for motor1 and motor2
- if (skid_steering) {
- float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
- float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
- steering = motor1 - motor2;
- throttle = 0.5*(motor1 + motor2);
- } else {
- steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
- throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
- }
- // how much time has passed?
- float delta_time = frame_time_us * 1.0e-6f;
- // speed in m/s in body frame
- Vector3f velocity_body = dcm.transposed() * velocity_ef;
- // speed along x axis, +ve is forward
- float speed = velocity_body.x;
- // yaw rate in degrees/s
- float yaw_rate = calc_yaw_rate(steering, speed);
- // target speed with current throttle
- float target_speed = throttle * max_speed;
- // linear acceleration in m/s/s - very crude model
- float accel = max_accel * (target_speed - speed) / max_speed;
- gyro = Vector3f(0,0,radians(yaw_rate));
- // update attitude
- dcm.rotate(gyro * delta_time);
- dcm.normalize();
- // accel in body frame due to motor
- accel_body = Vector3f(accel, 0, 0);
- // add in accel due to direction change
- accel_body.y += radians(yaw_rate) * speed;
- // now in earth frame
- Vector3f accel_earth = dcm * accel_body;
- accel_earth += Vector3f(0, 0, GRAVITY_MSS);
- // we are on the ground, so our vertical accel is zero
- accel_earth.z = 0;
- // work out acceleration as seen by the accelerometers. It sees the kinematic
- // acceleration (ie. real movement), plus gravity
- accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
- // new velocity vector
- velocity_ef += accel_earth * delta_time;
- // new position vector
- position += velocity_ef * delta_time;
- update_external_payload(input);
- // update lat/lon/altitude
- update_position();
- time_advance();
- // update magnetic field
- update_mag_field_bf();
- }
- } // namespace SITL
|