123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630 |
- #include <AP_HAL/AP_HAL.h>
- #include "AP_NavEKF3.h"
- #include "AP_NavEKF3_core.h"
- #include <AP_AHRS/AP_AHRS.h>
- #include <AP_Vehicle/AP_Vehicle.h>
- #include <AP_GPS/AP_GPS.h>
- extern const AP_HAL::HAL& hal;
- // Check basic filter health metrics and return a consolidated health status
- bool NavEKF3_core::healthy(void) const
- {
- uint16_t faultInt;
- getFilterFaults(faultInt);
- if (faultInt > 0) {
- return false;
- }
- if (velTestRatio > 1 && posTestRatio > 1 && hgtTestRatio > 1) {
- // all three metrics being above 1 means the filter is
- // extremely unhealthy.
- return false;
- }
- // Give the filter a second to settle before use
- if ((imuSampleTime_ms - ekfStartTime_ms) < 1000 ) {
- return false;
- }
- // position and height innovations must be within limits when on-ground and in a static mode of operation
- float horizErrSq = sq(innovVelPos[3]) + sq(innovVelPos[4]);
- if (onGround && (PV_AidingMode == AID_NONE) && ((horizErrSq > 1.0f) || (fabsf(hgtInnovFiltState) > 1.0f))) {
- return false;
- }
- // all OK
- return true;
- }
- // Return a consolidated error score where higher numbers represent larger errors
- // Intended to be used by the front-end to determine which is the primary EKF
- float NavEKF3_core::errorScore() const
- {
- float score = 0.0f;
- if (tiltAlignComplete && yawAlignComplete) {
- // Check GPS fusion performance
- score = MAX(score, 0.5f * (velTestRatio + posTestRatio));
- // Check altimeter fusion performance
- score = MAX(score, hgtTestRatio);
- }
- return score;
- }
- // return data for debugging optical flow fusion
- void NavEKF3_core::getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const
- {
- varFlow = MAX(flowTestRatio[0],flowTestRatio[1]);
- gndOffset = terrainState;
- flowInnovX = innovOptFlow[0];
- flowInnovY = innovOptFlow[1];
- auxInnov = norm(auxFlowObsInnov.x,auxFlowObsInnov.y);
- HAGL = terrainState - stateStruct.position.z;
- rngInnov = innovRng;
- range = rangeDataDelayed.rng;
- gndOffsetErr = sqrtf(Popt); // note Popt is constrained to be non-negative in EstimateTerrainOffset()
- }
- // return data for debugging body frame odometry fusion
- uint32_t NavEKF3_core::getBodyFrameOdomDebug(Vector3f &velInnov, Vector3f &velInnovVar)
- {
- velInnov.x = innovBodyVel[0];
- velInnov.y = innovBodyVel[1];
- velInnov.z = innovBodyVel[2];
- velInnovVar.x = varInnovBodyVel[0];
- velInnovVar.y = varInnovBodyVel[1];
- velInnovVar.z = varInnovBodyVel[2];
- return MAX(bodyOdmDataDelayed.time_ms,wheelOdmDataDelayed.time_ms);
- }
- // return data for debugging range beacon fusion one beacon at a time, incrementing the beacon index after each call
- bool NavEKF3_core::getRangeBeaconDebug(uint8_t &ID, float &rng, float &innov, float &innovVar, float &testRatio, Vector3f &beaconPosNED,
- float &offsetHigh, float &offsetLow, Vector3f &posNED)
- {
- // if the states have not been initialised or we have not received any beacon updates then return zeros
- if (!statesInitialised || N_beacons == 0) {
- return false;
- }
- // Ensure that beacons are not skipped due to calling this function at a rate lower than the updates
- if (rngBcnFuseDataReportIndex >= N_beacons) {
- rngBcnFuseDataReportIndex = 0;
- }
- // Output the fusion status data for the specified beacon
- ID = rngBcnFuseDataReportIndex; // beacon identifier
- rng = rngBcnFusionReport[rngBcnFuseDataReportIndex].rng; // measured range to beacon (m)
- innov = rngBcnFusionReport[rngBcnFuseDataReportIndex].innov; // range innovation (m)
- innovVar = rngBcnFusionReport[rngBcnFuseDataReportIndex].innovVar; // innovation variance (m^2)
- testRatio = rngBcnFusionReport[rngBcnFuseDataReportIndex].testRatio; // innovation consistency test ratio
- beaconPosNED = rngBcnFusionReport[rngBcnFuseDataReportIndex].beaconPosNED; // beacon receiver NED position (m)
- offsetHigh = bcnPosDownOffsetMax; // beacon system vertical pos offset upper estimate (m)
- offsetLow = bcnPosDownOffsetMin; // beacon system vertical pos offset lower estimate (m)
- posNED = receiverPos; // beacon system NED offset (m)
- rngBcnFuseDataReportIndex++;
- return true;
- }
- // provides the height limit to be observed by the control loops
- // returns false if no height limiting is required
- // this is needed to ensure the vehicle does not fly too high when using optical flow navigation
- bool NavEKF3_core::getHeightControlLimit(float &height) const
- {
- // only ask for limiting if we are doing optical flow navigation
- if (frontend->_fusionModeGPS == 3) {
- // If are doing optical flow nav, ensure the height above ground is within range finder limits after accounting for vehicle tilt and control errors
- height = MAX(float(frontend->_rng.max_distance_cm_orient(ROTATION_PITCH_270)) * 0.007f - 1.0f, 1.0f);
- // If we are are not using the range finder as the height reference, then compensate for the difference between terrain and EKF origin
- if (frontend->_altSource != 1) {
- height -= terrainState;
- }
- return true;
- } else {
- return false;
- }
- }
- // return the Euler roll, pitch and yaw angle in radians
- void NavEKF3_core::getEulerAngles(Vector3f &euler) const
- {
- outputDataNew.quat.to_euler(euler.x, euler.y, euler.z);
- euler = euler - _ahrs->get_trim();
- }
- // return body axis gyro bias estimates in rad/sec
- void NavEKF3_core::getGyroBias(Vector3f &gyroBias) const
- {
- if (dtEkfAvg < 1e-6f) {
- gyroBias.zero();
- return;
- }
- gyroBias = stateStruct.gyro_bias / dtEkfAvg;
- }
- // return accelerometer bias in m/s/s
- void NavEKF3_core::getAccelBias(Vector3f &accelBias) const
- {
- if (!statesInitialised) {
- accelBias.zero();
- return;
- }
- accelBias = stateStruct.accel_bias / dtEkfAvg;
- }
- // return tilt error convergence metric
- void NavEKF3_core::getTiltError(float &ang) const
- {
- ang = stateStruct.quat.length();
- }
- // return the transformation matrix from XYZ (body) to NED axes
- void NavEKF3_core::getRotationBodyToNED(Matrix3f &mat) const
- {
- outputDataNew.quat.rotation_matrix(mat);
- mat = mat * _ahrs->get_rotation_vehicle_body_to_autopilot_body();
- }
- // return the quaternions defining the rotation from NED to XYZ (body) axes
- void NavEKF3_core::getQuaternion(Quaternion& ret) const
- {
- ret = outputDataNew.quat;
- }
- // return the amount of yaw angle change due to the last yaw angle reset in radians
- // returns the time of the last yaw angle reset or 0 if no reset has ever occurred
- uint32_t NavEKF3_core::getLastYawResetAngle(float &yawAng) const
- {
- yawAng = yawResetAngle;
- return lastYawReset_ms;
- }
- // return the amount of NE position change due to the last position reset in metres
- // returns the time of the last reset or 0 if no reset has ever occurred
- uint32_t NavEKF3_core::getLastPosNorthEastReset(Vector2f &pos) const
- {
- pos = posResetNE;
- return lastPosReset_ms;
- }
- // return the amount of vertical position change due to the last vertical position reset in metres
- // returns the time of the last reset or 0 if no reset has ever occurred
- uint32_t NavEKF3_core::getLastPosDownReset(float &posD) const
- {
- posD = posResetD;
- return lastPosResetD_ms;
- }
- // return the amount of NE velocity change due to the last velocity reset in metres/sec
- // returns the time of the last reset or 0 if no reset has ever occurred
- uint32_t NavEKF3_core::getLastVelNorthEastReset(Vector2f &vel) const
- {
- vel = velResetNE;
- return lastVelReset_ms;
- }
- // return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
- void NavEKF3_core::getWind(Vector3f &wind) const
- {
- wind.x = stateStruct.wind_vel.x;
- wind.y = stateStruct.wind_vel.y;
- wind.z = 0.0f; // currently don't estimate this
- }
- // return the NED velocity of the body frame origin in m/s
- //
- void NavEKF3_core::getVelNED(Vector3f &vel) const
- {
- // correct for the IMU position offset (EKF calculations are at the IMU)
- vel = outputDataNew.velocity + velOffsetNED;
- }
- // Return the rate of change of vertical position in the down direction (dPosD/dt) of the body frame origin in m/s
- float NavEKF3_core::getPosDownDerivative(void) const
- {
- // return the value calculated from a complementary filter applied to the EKF height and vertical acceleration
- // correct for the IMU offset (EKF calculations are at the IMU)
- return posDownDerivative + velOffsetNED.z;
- }
- // This returns the specific forces in the NED frame
- void NavEKF3_core::getAccelNED(Vector3f &accelNED) const {
- accelNED = velDotNED;
- accelNED.z -= GRAVITY_MSS;
- }
- // Write the last estimated NE position of the body frame origin relative to the reference point (m).
- // Return true if the estimate is valid
- bool NavEKF3_core::getPosNE(Vector2f &posNE) const
- {
- // There are three modes of operation, absolute position (GPS fusion), relative position (optical flow fusion) and constant position (no position estimate available)
- if (PV_AidingMode != AID_NONE) {
- // This is the normal mode of operation where we can use the EKF position states
- // correct for the IMU offset (EKF calculations are at the IMU)
- posNE.x = outputDataNew.position.x + posOffsetNED.x;
- posNE.y = outputDataNew.position.y + posOffsetNED.y;
- return true;
- } else {
- // In constant position mode the EKF position states are at the origin, so we cannot use them as a position estimate
- if(validOrigin) {
- if ((AP::gps().status() >= AP_GPS::GPS_OK_FIX_2D)) {
- // If the origin has been set and we have GPS, then return the GPS position relative to the origin
- const struct Location &gpsloc = AP::gps().location();
- const Vector2f tempPosNE = EKF_origin.get_distance_NE(gpsloc);
- posNE.x = tempPosNE.x;
- posNE.y = tempPosNE.y;
- return false;
- } else if (rngBcnAlignmentStarted) {
- // If we are attempting alignment using range beacon data, then report the position
- posNE.x = receiverPos.x;
- posNE.y = receiverPos.y;
- return false;
- } else {
- // If no GPS fix is available, all we can do is provide the last known position
- posNE.x = outputDataNew.position.x;
- posNE.y = outputDataNew.position.y;
- return false;
- }
- } else {
- // If the origin has not been set, then we have no means of providing a relative position
- posNE.x = 0.0f;
- posNE.y = 0.0f;
- return false;
- }
- }
- return false;
- }
- // Write the last calculated D position of the body frame origin relative to the EKF origin (m).
- // Return true if the estimate is valid
- bool NavEKF3_core::getPosD(float &posD) const
- {
- // The EKF always has a height estimate regardless of mode of operation
- // Correct for the IMU offset (EKF calculations are at the IMU)
- // Also correct for changes to the origin height
- if ((frontend->_originHgtMode & (1<<2)) == 0) {
- // Any sensor height drift corrections relative to the WGS-84 reference are applied to the origin.
- posD = outputDataNew.position.z + posOffsetNED.z;
- } else {
- // The origin height is static and corrections are applied to the local vertical position
- // so that height returned by getLLH() = height returned by getOriginLLH - posD
- posD = outputDataNew.position.z + posOffsetNED.z + 0.01f * (float)EKF_origin.alt - (float)ekfGpsRefHgt;
- }
- // Return the current height solution status
- return filterStatus.flags.vert_pos;
- }
- // return the estimated height of body frame origin above ground level
- bool NavEKF3_core::getHAGL(float &HAGL) const
- {
- HAGL = terrainState - outputDataNew.position.z - posOffsetNED.z;
- // If we know the terrain offset and altitude, then we have a valid height above ground estimate
- return !hgtTimeout && gndOffsetValid && healthy();
- }
- // Return the last calculated latitude, longitude and height in WGS-84
- // If a calculated location isn't available, return a raw GPS measurement
- // The status will return true if a calculation or raw measurement is available
- // The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
- bool NavEKF3_core::getLLH(struct Location &loc) const
- {
- const AP_GPS &gps = AP::gps();
- Location origin;
- float posD;
- if(getPosD(posD) && getOriginLLH(origin)) {
- // Altitude returned is an absolute altitude relative to the WGS-84 spherioid
- loc.alt = origin.alt - posD*100;
- loc.relative_alt = 0;
- loc.terrain_alt = 0;
- // there are three modes of operation, absolute position (GPS fusion), relative position (optical flow fusion) and constant position (no aiding)
- if (filterStatus.flags.horiz_pos_abs || filterStatus.flags.horiz_pos_rel) {
- loc.lat = EKF_origin.lat;
- loc.lng = EKF_origin.lng;
- loc.offset(outputDataNew.position.x, outputDataNew.position.y);
- return true;
- } else {
- // we could be in constant position mode because the vehicle has taken off without GPS, or has lost GPS
- // in this mode we cannot use the EKF states to estimate position so will return the best available data
- if ((gps.status() >= AP_GPS::GPS_OK_FIX_2D)) {
- // we have a GPS position fix to return
- const struct Location &gpsloc = gps.location();
- loc.lat = gpsloc.lat;
- loc.lng = gpsloc.lng;
- return true;
- } else {
- // if no GPS fix, provide last known position before entering the mode
- loc.offset(lastKnownPositionNE.x, lastKnownPositionNE.y);
- return false;
- }
- }
- } else {
- // If no origin has been defined for the EKF, then we cannot use its position states so return a raw
- // GPS reading if available and return false
- if ((gps.status() >= AP_GPS::GPS_OK_FIX_3D)) {
- const struct Location &gpsloc = gps.location();
- loc = gpsloc;
- loc.relative_alt = 0;
- loc.terrain_alt = 0;
- }
- return false;
- }
- }
- // return the horizontal speed limit in m/s set by optical flow sensor limits
- // return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
- void NavEKF3_core::getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const
- {
- // If in the last 10 seconds we have received flow data and no odometry data, then we are relying on optical flow
- bool relyingOnFlowData = (imuSampleTime_ms - prevBodyVelFuseTime_ms > 1000)
- && (imuSampleTime_ms - flowValidMeaTime_ms <= 10000);
- // If relying on optical flow, limit speed to prevent sensor limit being exceeded and adjust
- // nav gains to prevent body rate feedback into flow rates destabilising the control loop
- if (PV_AidingMode == AID_RELATIVE && relyingOnFlowData) {
- // allow 1.0 rad/sec margin for angular motion
- ekfGndSpdLimit = MAX((frontend->_maxFlowRate - 1.0f), 0.0f) * MAX((terrainState - stateStruct.position[2]), rngOnGnd);
- // use standard gains up to 5.0 metres height and reduce above that
- ekfNavVelGainScaler = 4.0f / MAX((terrainState - stateStruct.position[2]),4.0f);
- } else {
- ekfGndSpdLimit = 400.0f; //return 80% of max filter speed
- ekfNavVelGainScaler = 1.0f;
- }
- }
- // return the LLH location of the filters NED origin
- bool NavEKF3_core::getOriginLLH(struct Location &loc) const
- {
- if (validOrigin) {
- loc = EKF_origin;
- // report internally corrected reference height if enabled
- if ((frontend->_originHgtMode & (1<<2)) == 0) {
- loc.alt = (int32_t)(100.0f * (float)ekfGpsRefHgt);
- }
- }
- return validOrigin;
- }
- // return earth magnetic field estimates in measurement units / 1000
- void NavEKF3_core::getMagNED(Vector3f &magNED) const
- {
- magNED = stateStruct.earth_magfield * 1000.0f;
- }
- // return body magnetic field estimates in measurement units / 1000
- void NavEKF3_core::getMagXYZ(Vector3f &magXYZ) const
- {
- magXYZ = stateStruct.body_magfield*1000.0f;
- }
- // return magnetometer offsets
- // return true if offsets are valid
- bool NavEKF3_core::getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const
- {
- if (!_ahrs->get_compass()) {
- return false;
- }
- // compass offsets are valid if we have finalised magnetic field initialisation, magnetic field learning is not prohibited,
- // primary compass is valid and state variances have converged
- const float maxMagVar = 5E-6f;
- bool variancesConverged = (P[19][19] < maxMagVar) && (P[20][20] < maxMagVar) && (P[21][21] < maxMagVar);
- if ((mag_idx == magSelectIndex) &&
- finalInflightMagInit &&
- !inhibitMagStates &&
- _ahrs->get_compass()->healthy(magSelectIndex) &&
- variancesConverged) {
- magOffsets = _ahrs->get_compass()->get_offsets(magSelectIndex) - stateStruct.body_magfield*1000.0f;
- return true;
- } else {
- magOffsets = _ahrs->get_compass()->get_offsets(magSelectIndex);
- return false;
- }
- }
- // return the index for the active magnetometer
- uint8_t NavEKF3_core::getActiveMag() const
- {
- return (uint8_t)magSelectIndex;
- }
- // return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
- void NavEKF3_core::getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const
- {
- velInnov.x = innovVelPos[0];
- velInnov.y = innovVelPos[1];
- velInnov.z = innovVelPos[2];
- posInnov.x = innovVelPos[3];
- posInnov.y = innovVelPos[4];
- posInnov.z = innovVelPos[5];
- magInnov.x = 1e3f*innovMag[0]; // Convert back to sensor units
- magInnov.y = 1e3f*innovMag[1]; // Convert back to sensor units
- magInnov.z = 1e3f*innovMag[2]; // Convert back to sensor units
- tasInnov = innovVtas;
- yawInnov = innovYaw;
- }
- // return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
- // this indicates the amount of margin available when tuning the various error traps
- // also return the delta in position due to the last position reset
- void NavEKF3_core::getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const
- {
- velVar = sqrtf(velTestRatio);
- posVar = sqrtf(posTestRatio);
- hgtVar = sqrtf(hgtTestRatio);
- // If we are using simple compass yaw fusion, populate all three components with the yaw test ratio to provide an equivalent output
- magVar.x = sqrtf(MAX(magTestRatio.x,yawTestRatio));
- magVar.y = sqrtf(MAX(magTestRatio.y,yawTestRatio));
- magVar.z = sqrtf(MAX(magTestRatio.z,yawTestRatio));
- tasVar = sqrtf(tasTestRatio);
- offset = posResetNE;
- }
- // return the diagonals from the covariance matrix
- void NavEKF3_core::getStateVariances(float stateVar[24])
- {
- for (uint8_t i=0; i<24; i++) {
- stateVar[i] = P[i][i];
- }
- }
- /*
- return the filter fault status as a bitmasked integer
- 0 = quaternions are NaN
- 1 = velocities are NaN
- 2 = badly conditioned X magnetometer fusion
- 3 = badly conditioned Y magnetometer fusion
- 5 = badly conditioned Z magnetometer fusion
- 6 = badly conditioned airspeed fusion
- 7 = badly conditioned synthetic sideslip fusion
- 7 = filter is not initialised
- */
- void NavEKF3_core::getFilterFaults(uint16_t &faults) const
- {
- faults = (stateStruct.quat.is_nan()<<0 |
- stateStruct.velocity.is_nan()<<1 |
- faultStatus.bad_xmag<<2 |
- faultStatus.bad_ymag<<3 |
- faultStatus.bad_zmag<<4 |
- faultStatus.bad_airspeed<<5 |
- faultStatus.bad_sideslip<<6 |
- !statesInitialised<<7);
- }
- /*
- return filter timeout status as a bitmasked integer
- 0 = position measurement timeout
- 1 = velocity measurement timeout
- 2 = height measurement timeout
- 3 = magnetometer measurement timeout
- 4 = true airspeed measurement timeout
- 5 = unassigned
- 6 = unassigned
- 7 = unassigned
- */
- void NavEKF3_core::getFilterTimeouts(uint8_t &timeouts) const
- {
- timeouts = (posTimeout<<0 |
- velTimeout<<1 |
- hgtTimeout<<2 |
- magTimeout<<3 |
- tasTimeout<<4);
- }
- // Return the navigation filter status message
- void NavEKF3_core::getFilterStatus(nav_filter_status &status) const
- {
- status = filterStatus;
- }
- /*
- return filter gps quality check status
- */
- void NavEKF3_core::getFilterGpsStatus(nav_gps_status &faults) const
- {
- // init return value
- faults.value = 0;
- // set individual flags
- faults.flags.bad_sAcc = gpsCheckStatus.bad_sAcc; // reported speed accuracy is insufficient
- faults.flags.bad_hAcc = gpsCheckStatus.bad_hAcc; // reported horizontal position accuracy is insufficient
- faults.flags.bad_vAcc = gpsCheckStatus.bad_vAcc; // reported vertical position accuracy is insufficient
- faults.flags.bad_yaw = gpsCheckStatus.bad_yaw; // EKF heading accuracy is too large for GPS use
- faults.flags.bad_sats = gpsCheckStatus.bad_sats; // reported number of satellites is insufficient
- faults.flags.bad_horiz_drift = gpsCheckStatus.bad_horiz_drift; // GPS horizontal drift is too large to start using GPS (check assumes vehicle is static)
- faults.flags.bad_hdop = gpsCheckStatus.bad_hdop; // reported HDoP is too large to start using GPS
- faults.flags.bad_vert_vel = gpsCheckStatus.bad_vert_vel; // GPS vertical speed is too large to start using GPS (check assumes vehicle is static)
- faults.flags.bad_fix = gpsCheckStatus.bad_fix; // The GPS cannot provide the 3D fix required
- faults.flags.bad_horiz_vel = gpsCheckStatus.bad_horiz_vel; // The GPS horizontal speed is excessive (check assumes the vehicle is static)
- }
- // send an EKF_STATUS message to GCS
- void NavEKF3_core::send_status_report(mavlink_channel_t chan)
- {
- // prepare flags
- uint16_t flags = 0;
- if (filterStatus.flags.attitude) {
- flags |= EKF_ATTITUDE;
- }
- if (filterStatus.flags.horiz_vel) {
- flags |= EKF_VELOCITY_HORIZ;
- }
- if (filterStatus.flags.vert_vel) {
- flags |= EKF_VELOCITY_VERT;
- }
- if (filterStatus.flags.horiz_pos_rel) {
- flags |= EKF_POS_HORIZ_REL;
- }
- if (filterStatus.flags.horiz_pos_abs) {
- flags |= EKF_POS_HORIZ_ABS;
- }
- if (filterStatus.flags.vert_pos) {
- flags |= EKF_POS_VERT_ABS;
- }
- if (filterStatus.flags.terrain_alt) {
- flags |= EKF_POS_VERT_AGL;
- }
- if (filterStatus.flags.const_pos_mode) {
- flags |= EKF_CONST_POS_MODE;
- }
- if (filterStatus.flags.pred_horiz_pos_rel) {
- flags |= EKF_PRED_POS_HORIZ_REL;
- }
- if (filterStatus.flags.pred_horiz_pos_abs) {
- flags |= EKF_PRED_POS_HORIZ_ABS;
- }
- if (filterStatus.flags.gps_glitching) {
- flags |= (1<<15);
- }
- // get variances
- float velVar, posVar, hgtVar, tasVar;
- Vector3f magVar;
- Vector2f offset;
- getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
- // Only report range finder normalised innovation levels if the EKF needs the data for primary
- // height estimation or optical flow operation. This prevents false alarms at the GCS if a
- // range finder is fitted for other applications
- float temp;
- if (((frontend->_useRngSwHgt > 0) && activeHgtSource == HGT_SOURCE_RNG) || (PV_AidingMode == AID_RELATIVE && flowDataValid)) {
- temp = sqrtf(auxRngTestRatio);
- } else {
- temp = 0.0f;
- }
- // send message
- mavlink_msg_ekf_status_report_send(chan, flags, velVar, posVar, hgtVar, magVar.length(), temp, tasVar);
- }
- // report the reason for why the backend is refusing to initialise
- const char *NavEKF3_core::prearm_failure_reason(void) const
- {
- if (gpsGoodToAlign) {
- // we are not failing
- return nullptr;
- }
- return prearm_fail_string;
- }
- // report the number of frames lapsed since the last state prediction
- // this is used by other instances to level load
- uint8_t NavEKF3_core::getFramesSincePredict(void) const
- {
- return framesSincePredict;
- }
- // publish output observer angular, velocity and position tracking error
- void NavEKF3_core::getOutputTrackingError(Vector3f &error) const
- {
- error = outputTrackError;
- }
|