123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374 |
- /*
- * quaternion.cpp
- * Copyright (C) Andrew Tridgell 2012
- *
- * This file is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This file is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- * See the GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #pragma GCC optimize("O2")
- #include "AP_Math.h"
- // return the rotation matrix equivalent for this quaternion
- void Quaternion::rotation_matrix(Matrix3f &m) const
- {
- const float q3q3 = q3 * q3;
- const float q3q4 = q3 * q4;
- const float q2q2 = q2 * q2;
- const float q2q3 = q2 * q3;
- const float q2q4 = q2 * q4;
- const float q1q2 = q1 * q2;
- const float q1q3 = q1 * q3;
- const float q1q4 = q1 * q4;
- const float q4q4 = q4 * q4;
- m.a.x = 1.0f-2.0f*(q3q3 + q4q4);
- m.a.y = 2.0f*(q2q3 - q1q4);
- m.a.z = 2.0f*(q2q4 + q1q3);
- m.b.x = 2.0f*(q2q3 + q1q4);
- m.b.y = 1.0f-2.0f*(q2q2 + q4q4);
- m.b.z = 2.0f*(q3q4 - q1q2);
- m.c.x = 2.0f*(q2q4 - q1q3);
- m.c.y = 2.0f*(q3q4 + q1q2);
- m.c.z = 1.0f-2.0f*(q2q2 + q3q3);
- }
- // return the rotation matrix equivalent for this quaternion after normalization
- void Quaternion::rotation_matrix_norm(Matrix3f &m) const
- {
- const float q1q1 = q1 * q1;
- const float q1q2 = q1 * q2;
- const float q1q3 = q1 * q3;
- const float q1q4 = q1 * q4;
- const float q2q2 = q2 * q2;
- const float q2q3 = q2 * q3;
- const float q2q4 = q2 * q4;
- const float q3q3 = q3 * q3;
- const float q3q4 = q3 * q4;
- const float q4q4 = q4 * q4;
- const float invs = 1.0f / (q1q1 + q2q2 + q3q3 + q4q4);
- m.a.x = ( q2q2 - q3q3 - q4q4 + q1q1)*invs;
- m.a.y = 2.0f*(q2q3 - q1q4)*invs;
- m.a.z = 2.0f*(q2q4 + q1q3)*invs;
- m.b.x = 2.0f*(q2q3 + q1q4)*invs;
- m.b.y = (-q2q2 + q3q3 - q4q4 + q1q1)*invs;
- m.b.z = 2.0f*(q3q4 - q1q2)*invs;
- m.c.x = 2.0f*(q2q4 - q1q3)*invs;
- m.c.y = 2.0f*(q3q4 + q1q2)*invs;
- m.c.z = (-q2q2 - q3q3 + q4q4 + q1q1)*invs;
- }
- // return the rotation matrix equivalent for this quaternion
- // Thanks to Martin John Baker
- // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
- void Quaternion::from_rotation_matrix(const Matrix3f &m)
- {
- const float &m00 = m.a.x;
- const float &m11 = m.b.y;
- const float &m22 = m.c.z;
- const float &m10 = m.b.x;
- const float &m01 = m.a.y;
- const float &m20 = m.c.x;
- const float &m02 = m.a.z;
- const float &m21 = m.c.y;
- const float &m12 = m.b.z;
- float &qw = q1;
- float &qx = q2;
- float &qy = q3;
- float &qz = q4;
- const float tr = m00 + m11 + m22;
- if (tr > 0) {
- const float S = sqrtf(tr+1) * 2;
- qw = 0.25f * S;
- qx = (m21 - m12) / S;
- qy = (m02 - m20) / S;
- qz = (m10 - m01) / S;
- } else if ((m00 > m11) && (m00 > m22)) {
- const float S = sqrtf(1.0f + m00 - m11 - m22) * 2.0f;
- qw = (m21 - m12) / S;
- qx = 0.25f * S;
- qy = (m01 + m10) / S;
- qz = (m02 + m20) / S;
- } else if (m11 > m22) {
- const float S = sqrtf(1.0f + m11 - m00 - m22) * 2.0f;
- qw = (m02 - m20) / S;
- qx = (m01 + m10) / S;
- qy = 0.25f * S;
- qz = (m12 + m21) / S;
- } else {
- const float S = sqrtf(1.0f + m22 - m00 - m11) * 2.0f;
- qw = (m10 - m01) / S;
- qx = (m02 + m20) / S;
- qy = (m12 + m21) / S;
- qz = 0.25f * S;
- }
- }
- // convert a vector from earth to body frame
- void Quaternion::earth_to_body(Vector3f &v) const
- {
- Matrix3f m;
- rotation_matrix(m);
- v = m * v;
- }
- // create a quaternion from Euler angles
- void Quaternion::from_euler(float roll, float pitch, float yaw)
- {
- const float cr2 = cosf(roll*0.5f);
- const float cp2 = cosf(pitch*0.5f);
- const float cy2 = cosf(yaw*0.5f);
- const float sr2 = sinf(roll*0.5f);
- const float sp2 = sinf(pitch*0.5f);
- const float sy2 = sinf(yaw*0.5f);
- q1 = cr2*cp2*cy2 + sr2*sp2*sy2;
- q2 = sr2*cp2*cy2 - cr2*sp2*sy2;
- q3 = cr2*sp2*cy2 + sr2*cp2*sy2;
- q4 = cr2*cp2*sy2 - sr2*sp2*cy2;
- }
- // create a quaternion from Euler angles
- void Quaternion::from_vector312(float roll ,float pitch, float yaw)
- {
- Matrix3f m;
- m.from_euler312(roll, pitch, yaw);
- from_rotation_matrix(m);
- }
- void Quaternion::from_axis_angle(Vector3f v)
- {
- const float theta = v.length();
- if (is_zero(theta)) {
- q1 = 1.0f;
- q2=q3=q4=0.0f;
- return;
- }
- v /= theta;
- from_axis_angle(v,theta);
- }
- void Quaternion::from_axis_angle(const Vector3f &axis, float theta)
- {
- // axis must be a unit vector as there is no check for length
- if (is_zero(theta)) {
- q1 = 1.0f;
- q2=q3=q4=0.0f;
- return;
- }
- const float st2 = sinf(theta/2.0f);
- q1 = cosf(theta/2.0f);
- q2 = axis.x * st2;
- q3 = axis.y * st2;
- q4 = axis.z * st2;
- }
- void Quaternion::rotate(const Vector3f &v)
- {
- Quaternion r;
- r.from_axis_angle(v);
- (*this) *= r;
- }
- void Quaternion::to_axis_angle(Vector3f &v)
- {
- const float l = sqrtf(sq(q2)+sq(q3)+sq(q4));
- v = Vector3f(q2,q3,q4);
- if (!is_zero(l)) {
- v /= l;
- v *= wrap_PI(2.0f * atan2f(l,q1));
- }
- }
- void Quaternion::from_axis_angle_fast(Vector3f v)
- {
- const float theta = v.length();
- if (is_zero(theta)) {
- q1 = 1.0f;
- q2=q3=q4=0.0f;
- return;
- }
- v /= theta;
- from_axis_angle_fast(v,theta);
- }
- void Quaternion::from_axis_angle_fast(const Vector3f &axis, float theta)
- {
- const float t2 = theta/2.0f;
- const float sqt2 = sq(t2);
- const float st2 = t2-sqt2*t2/6.0f;
- q1 = 1.0f-(sqt2/2.0f)+sq(sqt2)/24.0f;
- q2 = axis.x * st2;
- q3 = axis.y * st2;
- q4 = axis.z * st2;
- }
- void Quaternion::rotate_fast(const Vector3f &v)
- {
- const float theta = v.length();
- if (is_zero(theta)) {
- return;
- }
- const float t2 = theta/2.0f;
- const float sqt2 = sq(t2);
- float st2 = t2-sqt2*t2/6.0f;
- st2 /= theta;
- //"rotation quaternion"
- const float w2 = 1.0f-(sqt2/2.0f)+sq(sqt2)/24.0f;
- const float x2 = v.x * st2;
- const float y2 = v.y * st2;
- const float z2 = v.z * st2;
- //copy our quaternion
- const float w1 = q1;
- const float x1 = q2;
- const float y1 = q3;
- const float z1 = q4;
- //do the multiply into our quaternion
- q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2;
- q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2;
- q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2;
- q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2;
- }
- // get euler roll angle
- float Quaternion::get_euler_roll() const
- {
- return (atan2f(2.0f*(q1*q2 + q3*q4), 1.0f - 2.0f*(q2*q2 + q3*q3)));
- }
- // get euler pitch angle
- float Quaternion::get_euler_pitch() const
- {
- return safe_asin(2.0f*(q1*q3 - q4*q2));
- }
- // get euler yaw angle
- float Quaternion::get_euler_yaw() const
- {
- return atan2f(2.0f*(q1*q4 + q2*q3), 1.0f - 2.0f*(q3*q3 + q4*q4));
- }
- // create eulers from a quaternion
- void Quaternion::to_euler(float &roll, float &pitch, float &yaw) const
- {
- roll = get_euler_roll();
- pitch = get_euler_pitch();
- yaw = get_euler_yaw();
- }
- // create eulers from a quaternion
- Vector3f Quaternion::to_vector312(void) const
- {
- Matrix3f m;
- rotation_matrix(m);
- return m.to_euler312();
- }
- float Quaternion::length(void) const
- {
- return sqrtf(sq(q1) + sq(q2) + sq(q3) + sq(q4));
- }
- Quaternion Quaternion::inverse(void) const
- {
- return Quaternion(q1, -q2, -q3, -q4);
- }
- void Quaternion::normalize(void)
- {
- const float quatMag = length();
- if (!is_zero(quatMag)) {
- const float quatMagInv = 1.0f/quatMag;
- q1 *= quatMagInv;
- q2 *= quatMagInv;
- q3 *= quatMagInv;
- q4 *= quatMagInv;
- }
- }
- Quaternion Quaternion::operator*(const Quaternion &v) const
- {
- Quaternion ret;
- const float &w1 = q1;
- const float &x1 = q2;
- const float &y1 = q3;
- const float &z1 = q4;
- const float w2 = v.q1;
- const float x2 = v.q2;
- const float y2 = v.q3;
- const float z2 = v.q4;
- ret.q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2;
- ret.q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2;
- ret.q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2;
- ret.q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2;
- return ret;
- }
- Quaternion &Quaternion::operator*=(const Quaternion &v)
- {
- const float w1 = q1;
- const float x1 = q2;
- const float y1 = q3;
- const float z1 = q4;
- const float w2 = v.q1;
- const float x2 = v.q2;
- const float y2 = v.q3;
- const float z2 = v.q4;
- q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2;
- q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2;
- q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2;
- q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2;
- return *this;
- }
- Quaternion Quaternion::operator/(const Quaternion &v) const
- {
- Quaternion ret;
- const float &quat0 = q1;
- const float &quat1 = q2;
- const float &quat2 = q3;
- const float &quat3 = q4;
- const float rquat0 = v.q1;
- const float rquat1 = v.q2;
- const float rquat2 = v.q3;
- const float rquat3 = v.q4;
- ret.q1 = (rquat0*quat0 + rquat1*quat1 + rquat2*quat2 + rquat3*quat3);
- ret.q2 = (rquat0*quat1 - rquat1*quat0 - rquat2*quat3 + rquat3*quat2);
- ret.q3 = (rquat0*quat2 + rquat1*quat3 - rquat2*quat0 - rquat3*quat1);
- ret.q4 = (rquat0*quat3 - rquat1*quat2 + rquat2*quat1 - rquat3*quat0);
- return ret;
- }
- // angular difference in radians between quaternions
- Quaternion Quaternion::angular_difference(const Quaternion &v) const
- {
- return v.inverse() * *this;
- }
|