123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- % Implementation of a simple 3-state EKF that can identify the scale
- % factor that needs to be applied to a true airspeed measurement
- % Paul Riseborough 27 June 2013
- % Inputs:
- % Measured true airsped (m/s)
- clear all;
- % Define wind speed used for truth model
- vwn_truth = 4.0;
- vwe_truth = 3.0;
- vwd_truth = -0.5; % convection can produce values of up to 1.5 m/s, however
- % average will zero over longer periods at lower altitudes
- % Slope lift will be persistent
- % Define airspeed scale factor used for truth model
- K_truth = 1.2;
- % Use a 1 second time step
- DT = 1.0;
- % Define the initial state error covariance matrix
- % Assume initial wind uncertainty of 10 m/s and scale factor uncertainty of
- % 0.2
- P = diag([10^2 10^2 0.001^2]);
- % Define state error growth matrix assuming wind changes at a rate of 0.1
- % m/s/s and scale factor drifts at a rate of 0.001 per second
- Q = diag([0.1^2 0.1^2 0.001^2])*DT^2;
- % Define the initial state matrix assuming zero wind and a scale factor of
- % 1.0
- x = [0;0;1.0];
- for i = 1:1000
-
- %% Calculate truth values
- % calculate ground velocity by simulating a wind relative
- % circular path of of 60m radius and 16 m/s airspeed
- time = i*DT;
- radius = 60;
- TAS_truth = 16;
- vwnrel_truth = TAS_truth*cos(TAS_truth*time/radius);
- vwerel_truth = TAS_truth*sin(TAS_truth*time/radius);
- vwdrel_truth = 0.0;
- vgn_truth = vwnrel_truth + vwn_truth;
- vge_truth = vwerel_truth + vwe_truth;
- vgd_truth = vwdrel_truth + vwd_truth;
-
- % calculate measured ground velocity and airspeed, adding some noise and
- % adding a scale factor to the airspeed measurement.
- vgn_mea = vgn_truth + 0.1*rand;
- vge_mea = vge_truth + 0.1*rand;
- vgd_mea = vgd_truth + 0.1*rand;
- TAS_mea = K_truth * TAS_truth + 0.5*rand;
-
- %% Perform filter processing
- % This benefits from a matrix library that can handle up to 3x3
- % matrices
-
- % Perform the covariance prediction
- % Q is a diagonal matrix so only need to add three terms in
- % C code implementation
- P = P + Q;
-
- % Perform the predicted measurement using the current state estimates
- % No state prediction required because states are assumed to be time
- % invariant plus process noise
- % Ignore vertical wind component
- TAS_pred = x(3) * sqrt((vgn_mea - x(1))^2 + (vge_mea - x(2))^2 + vgd_mea^2);
-
- % Calculate the observation Jacobian H_TAS
- SH1 = (vge_mea - x(2))^2 + (vgn_mea - x(1))^2;
- SH2 = 1/sqrt(SH1);
- H_TAS = zeros(1,3);
- H_TAS(1,1) = -(x(3)*SH2*(2*vgn_mea - 2*x(1)))/2;
- H_TAS(1,2) = -(x(3)*SH2*(2*vge_mea - 2*x(2)))/2;
- H_TAS(1,3) = 1/SH2;
-
- % Calculate the fusion innovaton covariance assuming a TAS measurement
- % noise of 1.0 m/s
- S = H_TAS*P*H_TAS' + 1.0; % [1 x 3] * [3 x 3] * [3 x 1] + [1 x 1]
-
- % Calculate the Kalman gain
- KG = P*H_TAS'/S; % [3 x 3] * [3 x 1] / [1 x 1]
-
- % Update the states
- x = x + KG*(TAS_mea - TAS_pred); % [3 x 1] + [3 x 1] * [1 x 1]
-
- % Update the covariance matrix
- P = P - KG*H_TAS*P; % [3 x 3] *
-
- % force symmetry on the covariance matrix - necessary due to rounding
- % errors
- % Implementation will also need a further check to prevent diagonal
- % terms becoming negative due to rounding errors
- % This step can be made more efficient by excluding diagonal terms
- % (would reduce processing by 1/3)
- P = 0.5*(P + P'); % [1 x 1] * ( [3 x 3] + [3 x 3])
-
- %% Store results
- output(i,:) = [time,x(1),x(2),x(3),vwn_truth,vwe_truth,K_truth];
-
- end
- %% Plot output
- figure;
- subplot(3,1,1);plot(output(:,1),[output(:,2),output(:,5)]);
- ylabel('Wind Vel North (m/s)');
- xlabel('time (sec)');
- grid on;
- subplot(3,1,2);plot(output(:,1),[output(:,3),output(:,6)]);
- ylabel('Wind Vel East (m/s)');
- xlabel('time (sec)');
- grid on;
- subplot(3,1,3);plot(output(:,1),[output(:,4),output(:,7)]);
- ylim([0 1.5]);
- ylabel('Airspeed scale factor correction');
- xlabel('time (sec)');
- grid on;
|