123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- /*
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include "AP_OABendyRuler.h"
- #include <AC_Avoidance/AP_OADatabase.h>
- #include <AC_Fence/AC_Fence.h>
- #include <AP_AHRS/AP_AHRS.h>
- #include <AP_Logger/AP_Logger.h>
- const int16_t OA_BENDYRULER_BEARING_INC = 5; // check every 5 degrees around vehicle
- const float OA_BENDYRULER_LOOKAHEAD_STEP2_RATIO = 1.0f; // step2's lookahead length as a ratio of step1's lookahead length
- const float OA_BENDYRULER_LOOKAHEAD_STEP2_MIN = 2.0f; // step2 checks at least this many meters past step1's location
- const float OA_BENDYRULER_LOOKAHEAD_PAST_DEST = 2.0f; // lookahead length will be at least this many meters past the destination
- const float OA_BENDYRULER_LOW_SPEED_SQUARED = (0.2f * 0.2f); // when ground course is below this speed squared, vehicle's heading will be used
- // run background task to find best path and update avoidance_results
- // returns true and updates origin_new and destination_new if a best path has been found
- bool AP_OABendyRuler::update(const Location& current_loc, const Location& destination, const Vector2f &ground_speed_vec, Location &origin_new, Location &destination_new)
- {
- // bendy ruler always sets origin to current_loc
- origin_new = current_loc;
- // calculate bearing and distance to final destination
- const float bearing_to_dest = current_loc.get_bearing_to(destination) * 0.01f;
- const float distance_to_dest = current_loc.get_distance(destination);
- // lookahead distance is adjusted dynamically based on avoidance results
- _current_lookahead = constrain_float(_current_lookahead, _lookahead * 0.5f, _lookahead);
- // calculate lookahead dist and time for step1. distance can be slightly longer than
- // the distance to the destination to allow room to dodge after reaching the destination
- const float lookahead_step1_dist = MIN(_current_lookahead, distance_to_dest + OA_BENDYRULER_LOOKAHEAD_PAST_DEST);
- // calculate lookahead dist for step2
- const float lookahead_step2_dist = _current_lookahead * OA_BENDYRULER_LOOKAHEAD_STEP2_RATIO;
- // get ground course
- float ground_course_deg;
- if (ground_speed_vec.length_squared() < OA_BENDYRULER_LOW_SPEED_SQUARED) {
- // with zero ground speed use vehicle's heading
- ground_course_deg = AP::ahrs().yaw_sensor * 0.01f;
- } else {
- ground_course_deg = degrees(ground_speed_vec.angle());
- }
- // check OA_BEARING_INC definition allows checking in all directions
- static_assert(360 % OA_BENDYRULER_BEARING_INC == 0, "check 360 is a multiple of OA_BEARING_INC");
- // search in OA_BENDYRULER_BEARING_INC degree increments around the vehicle alternating left
- // and right. For each direction check if vehicle would avoid all obstacles
- float best_bearing = bearing_to_dest;
- bool have_best_bearing = false;
- float best_margin = -FLT_MAX;
- float best_margin_bearing = best_bearing;
- for (uint8_t i = 0; i <= (170 / OA_BENDYRULER_BEARING_INC); i++) {
- for (uint8_t bdir = 0; bdir <= 1; bdir++) {
- // skip duplicate check of bearing straight towards destination
- if ((i==0) && (bdir > 0)) {
- continue;
- }
- // bearing that we are probing
- const float bearing_delta = i * OA_BENDYRULER_BEARING_INC * (bdir == 0 ? -1.0f : 1.0f);
- const float bearing_test = wrap_180(bearing_to_dest + bearing_delta);
- // ToDo: add effective groundspeed calculations using airspeed
- // ToDo: add prediction of vehicle's position change as part of turn to desired heading
- // test location is projected from current location at test bearing
- Location test_loc = current_loc;
- test_loc.offset_bearing(bearing_test, lookahead_step1_dist);
- // calculate margin from fence for this scenario
- float margin = calc_avoidance_margin(current_loc, test_loc);
- if (margin > best_margin) {
- best_margin_bearing = bearing_test;
- best_margin = margin;
- }
- if (margin > _margin_max) {
- // this bearing avoids obstacles out to the lookahead_step1_dist
- // now check in there is a clear path in three directions towards the destination
- if (!have_best_bearing) {
- best_bearing = bearing_test;
- have_best_bearing = true;
- } else if (fabsf(wrap_180(ground_course_deg - bearing_test)) <
- fabsf(wrap_180(ground_course_deg - best_bearing))) {
- // replace bearing with one that is closer to our current ground course
- best_bearing = bearing_test;
- }
- // perform second stage test in three directions looking for obstacles
- const float test_bearings[] { 0.0f, 45.0f, -45.0f };
- const float bearing_to_dest2 = test_loc.get_bearing_to(destination) * 0.01f;
- float distance2 = constrain_float(lookahead_step2_dist, OA_BENDYRULER_LOOKAHEAD_STEP2_MIN, test_loc.get_distance(destination));
- for (uint8_t j = 0; j < ARRAY_SIZE(test_bearings); j++) {
- float bearing_test2 = wrap_180(bearing_to_dest2 + test_bearings[j]);
- Location test_loc2 = test_loc;
- test_loc2.offset_bearing(bearing_test2, distance2);
- // calculate minimum margin to fence and obstacles for this scenario
- float margin2 = calc_avoidance_margin(test_loc, test_loc2);
- if (margin2 > _margin_max) {
- // all good, now project in the chosen direction by the full distance
- destination_new = current_loc;
- destination_new.offset_bearing(bearing_test, distance_to_dest);
- _current_lookahead = MIN(_lookahead, _current_lookahead * 1.1f);
- // if the chosen direction is directly towards the destination turn off avoidance
- const bool active = (i != 0 || j != 0);
- AP::logger().Write_OABendyRuler(active, bearing_to_dest, margin, destination, destination_new);
- return active;
- }
- }
- }
- }
- }
- float chosen_bearing;
- if (have_best_bearing) {
- // none of the directions tested were OK for 2-step checks. Choose the direction
- // that was best for the first step
- chosen_bearing = best_bearing;
- _current_lookahead = MIN(_lookahead, _current_lookahead * 1.05f);
- } else {
- // none of the possible paths had a positive margin. Choose
- // the one with the highest margin
- chosen_bearing = best_margin_bearing;
- _current_lookahead = MAX(_lookahead * 0.5f, _current_lookahead * 0.9f);
- }
- // calculate new target based on best effort
- destination_new = current_loc;
- destination_new.offset_bearing(chosen_bearing, distance_to_dest);
- // log results
- AP::logger().Write_OABendyRuler(true, chosen_bearing, best_margin, destination, destination_new);
- return true;
- }
- // calculate minimum distance between a segment and any obstacle
- float AP_OABendyRuler::calc_avoidance_margin(const Location &start, const Location &end)
- {
- float circular_fence_margin;
- if (!calc_margin_from_circular_fence(start, end, circular_fence_margin)) {
- circular_fence_margin = FLT_MAX;
- }
- float polygon_fence_margin;
- if (!calc_margin_from_polygon_fence(start, end, polygon_fence_margin)) {
- polygon_fence_margin = FLT_MAX;
- }
- float proximity_margin;
- if (!calc_margin_from_object_database(start, end, proximity_margin)) {
- proximity_margin = FLT_MAX;
- }
- // return smallest margin from any obstacle
- return MIN(MIN(circular_fence_margin, polygon_fence_margin), proximity_margin);
- }
- // calculate minimum distance between a path and the circular fence (centered on home)
- // on success returns true and updates margin
- bool AP_OABendyRuler::calc_margin_from_circular_fence(const Location &start, const Location &end, float &margin)
- {
- // exit immediately if polygon fence is not enabled
- const AC_Fence *fence = AC_Fence::get_singleton();
- if (fence == nullptr) {
- return false;
- }
- if ((fence->get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) == 0) {
- return false;
- }
- // calculate start and end point's distance from home
- const Location &ahrs_home = AP::ahrs().get_home();
- const float start_dist_sq = ahrs_home.get_distance_NE(start).length_squared();
- const float end_dist_sq = ahrs_home.get_distance_NE(end).length_squared();
- // get circular fence radius
- const float fence_radius = fence->get_radius();
- // margin is fence radius minus the longer of start or end distance
- margin = fence_radius - sqrtf(MAX(start_dist_sq, end_dist_sq));
- return true;
- }
- // calculate minimum distance between a path and the polygon fence
- // on success returns true and updates margin
- bool AP_OABendyRuler::calc_margin_from_polygon_fence(const Location &start, const Location &end, float &margin)
- {
- // exit immediately if polygon fence is not enabled
- const AC_Fence *fence = AC_Fence::get_singleton();
- if (fence == nullptr) {
- return false;
- }
- if (((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) || !fence->is_polygon_valid()) {
- return false;
- }
- // get polygon boundary
- uint16_t num_points;
- const Vector2f* boundary = fence->get_boundary_points(num_points);
- if (num_points < 3) {
- // this should have already been checked by is_polygon_valid() but just in case
- return false;
- }
- // convert start and end to offsets from EKF origin
- Vector2f start_NE, end_NE;
- if (!start.get_vector_xy_from_origin_NE(start_NE) || !end.get_vector_xy_from_origin_NE(end_NE)) {
- return false;
- }
- // if outside the fence margin is the closest distance but with negative sign
- const float sign = Polygon_outside(start_NE, boundary, num_points) ? -1.0f : 1.0f;
- // calculate min distance (in meters) from line to polygon
- margin = sign * Polygon_closest_distance_line(boundary, num_points, start_NE, end_NE) * 0.01f;
- return true;
- }
- // calculate minimum distance between a path and proximity sensor obstacles
- // on success returns true and updates margin
- bool AP_OABendyRuler::calc_margin_from_object_database(const Location &start, const Location &end, float &margin)
- {
- #if !HAL_MINIMIZE_FEATURES
- // exit immediately if db is empty
- AP_OADatabase *oaDb = AP::oadatabase();
- if (oaDb == nullptr || !oaDb->healthy()) {
- return false;
- }
- // convert start and end to offsets (in cm) from EKF origin
- Vector2f start_NE, end_NE;
- if (!start.get_vector_xy_from_origin_NE(start_NE) || !end.get_vector_xy_from_origin_NE(end_NE)) {
- return false;
- }
- // check each obstacle's distance from segment
- float smallest_margin = FLT_MAX;
- for (uint16_t i=0; i<oaDb->database_count(); i++) {
- // convert obstacle's location to offset (in cm) from EKF origin
- Vector2f point;
- if (!oaDb->get_item(i).loc.get_vector_xy_from_origin_NE(point)) {
- continue;
- }
- // margin is distance between line segment and obstacle minus obstacle's radius
- const float m = Vector2f::closest_distance_between_line_and_point(start_NE, end_NE, point) * 0.01f - oaDb->get_accuracy();
- if (m < smallest_margin) {
- smallest_margin = m;
- }
- }
- // return smallest margin
- if (smallest_margin < FLT_MAX) {
- margin = smallest_margin;
- return true;
- }
- #endif
- return false;
- }
|