123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- /*
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include <AP_HAL/AP_HAL.h>
- #include "AP_RangeFinder_LightWareSerial.h"
- #include <AP_SerialManager/AP_SerialManager.h>
- #include <ctype.h>
- #include "AP_RangeFinder_NMEA.h"
- extern const AP_HAL::HAL& hal;
- // constructor initialises the rangefinder
- // Note this is called after detect() returns true, so we
- // already know that we should setup the rangefinder
- AP_RangeFinder_NMEA::AP_RangeFinder_NMEA(RangeFinder::RangeFinder_State &_state,
- AP_RangeFinder_Params &_params,
- uint8_t serial_instance) :
- AP_RangeFinder_Backend(_state, _params),
- _distance_m(-1.0f)
- {
- const AP_SerialManager &serial_manager = AP::serialmanager();
- uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance);
- if (uart != nullptr) {
- uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance));
- }
- }
- // detect if a NMEA rangefinder by looking to see if the user has configured it
- bool AP_RangeFinder_NMEA::detect(uint8_t serial_instance)
- {
- return AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance) != nullptr;
- }
- // update the state of the sensor
- void AP_RangeFinder_NMEA::update(void)
- {
- uint32_t now = AP_HAL::millis();
- if (get_reading(state.distance_cm)) {
- // update range_valid state based on distance measured
- state.last_reading_ms = now;
- update_status();
- } else if ((now - state.last_reading_ms) > 3000) {
- set_status(RangeFinder::RangeFinder_NoData);
- }
- }
- // return last value measured by sensor
- bool AP_RangeFinder_NMEA::get_reading(uint16_t &reading_cm)
- {
- if (uart == nullptr) {
- return false;
- }
- // read any available lines from the lidar
- float sum = 0.0f;
- uint16_t count = 0;
- int16_t nbytes = uart->available();
- while (nbytes-- > 0) {
- char c = uart->read();
- if (decode(c)) {
- sum += _distance_m;
- count++;
- }
- }
- // return false on failure
- if (count == 0) {
- return false;
- }
- // return average of all measurements
- reading_cm = 100.0f * sum / count;
- return true;
- }
- // add a single character to the buffer and attempt to decode
- // returns true if a complete sentence was successfully decoded
- bool AP_RangeFinder_NMEA::decode(char c)
- {
- switch (c) {
- case ',':
- // end of a term, add to checksum
- _checksum ^= c;
- FALLTHROUGH;
- case '\r':
- case '\n':
- case '*':
- {
- // null terminate and decode latest term
- _term[_term_offset] = 0;
- bool valid_sentence = decode_latest_term();
- // move onto next term
- _term_number++;
- _term_offset = 0;
- _term_is_checksum = (c == '*');
- return valid_sentence;
- }
- case '$': // sentence begin
- _sentence_type = SONAR_UNKNOWN;
- _term_number = 0;
- _term_offset = 0;
- _checksum = 0;
- _term_is_checksum = false;
- _distance_m = -1.0f;
- return false;
- }
- // ordinary characters are added to term
- if (_term_offset < sizeof(_term) - 1) {
- _term[_term_offset++] = c;
- }
- if (!_term_is_checksum) {
- _checksum ^= c;
- }
- return false;
- }
- // decode the most recently consumed term
- // returns true if new sentence has just passed checksum test and is validated
- bool AP_RangeFinder_NMEA::decode_latest_term()
- {
- // handle the last term in a message
- if (_term_is_checksum) {
- uint8_t nibble_high = 0;
- uint8_t nibble_low = 0;
- if (!hex_to_uint8(_term[0], nibble_high) || !hex_to_uint8(_term[1], nibble_low)) {
- return false;
- }
- const uint8_t checksum = (nibble_high << 4u) | nibble_low;
- return ((checksum == _checksum) &&
- !is_negative(_distance_m) &&
- (_sentence_type == SONAR_DBT || _sentence_type == SONAR_DPT));
- }
- // the first term determines the sentence type
- if (_term_number == 0) {
- // the first two letters of the NMEA term are the talker ID.
- // we accept any two characters here.
- if (_term[0] < 'A' || _term[0] > 'Z' ||
- _term[1] < 'A' || _term[1] > 'Z') {
- _sentence_type = SONAR_UNKNOWN;
- return false;
- }
- const char *term_type = &_term[2];
- if (strcmp(term_type, "DBT") == 0) {
- _sentence_type = SONAR_DBT;
- } else if (strcmp(term_type, "DPT") == 0) {
- _sentence_type = SONAR_DPT;
- } else {
- _sentence_type = SONAR_UNKNOWN;
- }
- return false;
- }
- if (_sentence_type == SONAR_DBT) {
- // parse DBT messages
- if (_term_number == 3) {
- _distance_m = atof(_term);
- }
- } else if (_sentence_type == SONAR_DPT) {
- // parse DPT messages
- if (_term_number == 1) {
- _distance_m = atof(_term);
- }
- }
- return false;
- }
|