123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- /*
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include <AP_HAL/AP_HAL.h>
- #if CONFIG_HAL_BOARD == HAL_BOARD_SITL
- #include "AP_Proximity_MorseSITL.h"
- #include <stdio.h>
- extern const AP_HAL::HAL& hal;
- #define PROXIMITY_MAX_RANGE 200.0f
- #define PROXIMITY_ACCURACY 0.1f
- /*
- The constructor also initialises the proximity sensor.
- */
- AP_Proximity_MorseSITL::AP_Proximity_MorseSITL(AP_Proximity &_frontend,
- AP_Proximity::Proximity_State &_state):
- AP_Proximity_Backend(_frontend, _state),
- sitl(AP::sitl())
- {
- }
- // update the state of the sensor
- void AP_Proximity_MorseSITL::update(void)
- {
- SITL::vector3f_array &points = sitl->state.scanner.points;
- SITL::float_array &ranges = sitl->state.scanner.ranges;
- if (points.length != ranges.length ||
- points.length == 0) {
- set_status(AP_Proximity::Proximity_NoData);
- return;
- }
- set_status(AP_Proximity::Proximity_Good);
- memset(_distance_valid, 0, sizeof(_distance_valid));
- memset(_angle, 0, sizeof(_angle));
- memset(_distance, 0, sizeof(_distance));
- // only use 8 sectors to match RPLidar
- const uint8_t nsectors = MIN(8, PROXIMITY_SECTORS_MAX);
- const uint16_t degrees_per_sector = 360 / nsectors;
- for (uint16_t i=0; i<points.length; i++) {
- Vector3f &point = points.data[i];
- float &range = ranges.data[i];
- distance_maximum = MAX(distance_maximum, range);
- if (point.is_zero()) {
- continue;
- }
- float angle_deg = wrap_360(degrees(atan2f(-point.y, point.x)));
- uint16_t angle_rounded = uint16_t(angle_deg+0.5);
- uint8_t sector = wrap_360(angle_rounded + 22.5f) / degrees_per_sector;
- if (!_distance_valid[sector] || range < _distance[sector]) {
- _distance_valid[sector] = true;
- _distance[sector] = range;
- _angle[sector] = angle_deg;
- update_boundary_for_sector(sector, true);
- }
- }
- #if 0
- printf("npoints=%u\n", points.length);
- for (uint16_t i=0; i<nsectors; i++) {
- printf("sector[%u] ang=%.1f dist=%.1f\n", i, _angle[i], _distance[i]);
- }
- #endif
- }
- // get maximum and minimum distances (in meters) of primary sensor
- float AP_Proximity_MorseSITL::distance_max() const
- {
- // we don't have a data field from Morse for max range, so we use the max
- // we've ever seen
- return distance_maximum;
- }
- float AP_Proximity_MorseSITL::distance_min() const
- {
- return 0.0f;
- }
- // get distance upwards in meters. returns true on success
- bool AP_Proximity_MorseSITL::get_upward_distance(float &distance) const
- {
- // we don't have an upward facing laser
- return false;
- }
- #endif // CONFIG_HAL_BOARD
|