123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735 |
- #include <AP_HAL/AP_HAL.h>
- #include "AP_NavEKF2.h"
- #include "AP_NavEKF2_core.h"
- #include <AP_AHRS/AP_AHRS.h>
- #include <AP_Vehicle/AP_Vehicle.h>
- #include <stdio.h>
- extern const AP_HAL::HAL& hal;
- /********************************************************
- * RESET FUNCTIONS *
- ********************************************************/
- /********************************************************
- * FUSE MEASURED_DATA *
- ********************************************************/
- // select fusion of optical flow measurements
- void NavEKF2_core::SelectFlowFusion()
- {
- // Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz
- // If so, don't fuse measurements on this time step to reduce frame over-runs
- // Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements
- if (magFusePerformed && dtIMUavg < 0.005f && !optFlowFusionDelayed) {
- optFlowFusionDelayed = true;
- return;
- } else {
- optFlowFusionDelayed = false;
- }
- // start performance timer
- hal.util->perf_begin(_perf_FuseOptFlow);
- // Perform Data Checks
- // Check if the optical flow data is still valid
- flowDataValid = ((imuSampleTime_ms - flowValidMeaTime_ms) < 1000);
- // check is the terrain offset estimate is still valid - if we are using range finder as the main height reference, the ground is assumed to be at 0
- gndOffsetValid = ((imuSampleTime_ms - gndHgtValidTime_ms) < 5000) || (activeHgtSource == HGT_SOURCE_RNG);
- // Perform tilt check
- bool tiltOK = (prevTnb.c.z > frontend->DCM33FlowMin);
- // Constrain measurements to zero if takeoff is not detected and the height above ground
- // is insuffient to achieve acceptable focus. This allows the vehicle to be picked up
- // and carried to test optical flow operation
- if (!takeOffDetected && ((terrainState - stateStruct.position.z) < 0.5f)) {
- ofDataDelayed.flowRadXYcomp.zero();
- ofDataDelayed.flowRadXY.zero();
- flowDataValid = true;
- }
- // if have valid flow or range measurements, fuse data into a 1-state EKF to estimate terrain height
- if (((flowDataToFuse && (frontend->_flowUse == FLOW_USE_TERRAIN)) || rangeDataToFuse) && tiltOK) {
- // Estimate the terrain offset (runs a one state EKF)
- EstimateTerrainOffset();
- }
- // Fuse optical flow data into the main filter
- if (flowDataToFuse && tiltOK) {
- if (frontend->_flowUse == FLOW_USE_NAV) {
- // Set the flow noise used by the fusion processes
- R_LOS = sq(MAX(frontend->_flowNoise, 0.05f));
- // Fuse the optical flow X and Y axis data into the main filter sequentially
- FuseOptFlow();
- }
- // reset flag to indicate that no new flow data is available for fusion
- flowDataToFuse = false;
- }
- // stop the performance timer
- hal.util->perf_end(_perf_FuseOptFlow);
- }
- /*
- Estimation of terrain offset using a single state EKF
- The filter can fuse motion compensated optical flow rates and range finder measurements
- Equations generated using https://github.com/PX4/ecl/tree/master/EKF/matlab/scripts/Terrain%20Estimator
- */
- void NavEKF2_core::EstimateTerrainOffset()
- {
- // start performance timer
- hal.util->perf_begin(_perf_TerrainOffset);
- // horizontal velocity squared
- float velHorizSq = sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y);
- // don't fuse flow data if LOS rate is misaligned, without GPS, or insufficient velocity, as it is poorly observable
- // don't fuse flow data if it exceeds validity limits
- // don't update terrain offset if grpund is being used as the zero height datum in the main filter
- bool cantFuseFlowData = ((frontend->_flowUse != FLOW_USE_TERRAIN)
- || gpsNotAvailable
- || PV_AidingMode == AID_RELATIVE
- || velHorizSq < 25.0f
- || (MAX(ofDataDelayed.flowRadXY[0],ofDataDelayed.flowRadXY[1]) > frontend->_maxFlowRate));
- if ((!rangeDataToFuse && cantFuseFlowData) || (activeHgtSource == HGT_SOURCE_RNG)) {
- // skip update
- inhibitGndState = true;
- } else {
- inhibitGndState = false;
- // record the time we last updated the terrain offset state
- gndHgtValidTime_ms = imuSampleTime_ms;
- // propagate ground position state noise each time this is called using the difference in position since the last observations and an RMS gradient assumption
- // limit distance to prevent intialisation afer bad gps causing bad numerical conditioning
- float distanceTravelledSq = sq(stateStruct.position[0] - prevPosN) + sq(stateStruct.position[1] - prevPosE);
- distanceTravelledSq = MIN(distanceTravelledSq, 100.0f);
- prevPosN = stateStruct.position[0];
- prevPosE = stateStruct.position[1];
- // in addition to a terrain gradient error model, we also have the growth in uncertainty due to the copters vertical velocity
- float timeLapsed = MIN(0.001f * (imuSampleTime_ms - timeAtLastAuxEKF_ms), 1.0f);
- float Pincrement = (distanceTravelledSq * sq(frontend->_terrGradMax)) + sq(timeLapsed)*P[5][5];
- Popt += Pincrement;
- timeAtLastAuxEKF_ms = imuSampleTime_ms;
- // fuse range finder data
- if (rangeDataToFuse) {
- // predict range
- float predRngMeas = MAX((terrainState - stateStruct.position[2]),rngOnGnd) / prevTnb.c.z;
- // Copy required states to local variable names
- float q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time
- float q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time
- float q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time
- float q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time
- // Set range finder measurement noise variance. TODO make this a function of range and tilt to allow for sensor, alignment and AHRS errors
- float R_RNG = frontend->_rngNoise;
- // calculate Kalman gain
- float SK_RNG = sq(q0) - sq(q1) - sq(q2) + sq(q3);
- float K_RNG = Popt/(SK_RNG*(R_RNG + Popt/sq(SK_RNG)));
- // Calculate the innovation variance for data logging
- varInnovRng = (R_RNG + Popt/sq(SK_RNG));
- // constrain terrain height to be below the vehicle
- terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd);
- // Calculate the measurement innovation
- innovRng = predRngMeas - rangeDataDelayed.rng;
- // calculate the innovation consistency test ratio
- auxRngTestRatio = sq(innovRng) / (sq(MAX(0.01f * (float)frontend->_rngInnovGate, 1.0f)) * varInnovRng);
- // Check the innovation test ratio and don't fuse if too large
- if (auxRngTestRatio < 1.0f) {
- // correct the state
- terrainState -= K_RNG * innovRng;
- // constrain the state
- terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd);
- // correct the covariance
- Popt = Popt - sq(Popt)/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))*(sq(q0) - sq(q1) - sq(q2) + sq(q3)));
- // prevent the state variance from becoming negative
- Popt = MAX(Popt,0.0f);
- }
- }
- if (!cantFuseFlowData) {
- Vector3f relVelSensor; // velocity of sensor relative to ground in sensor axes
- Vector2f losPred; // predicted optical flow angular rate measurement
- float q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time
- float q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time
- float q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time
- float q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time
- float K_OPT;
- float H_OPT;
- Vector2f auxFlowObsInnovVar;
- // predict range to centre of image
- float flowRngPred = MAX((terrainState - stateStruct.position.z),rngOnGnd) / prevTnb.c.z;
- // constrain terrain height to be below the vehicle
- terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
- // calculate relative velocity in sensor frame
- relVelSensor = prevTnb*stateStruct.velocity;
- // divide velocity by range, subtract body rates and apply scale factor to
- // get predicted sensed angular optical rates relative to X and Y sensor axes
- losPred.x = relVelSensor.y / flowRngPred;
- losPred.y = - relVelSensor.x / flowRngPred;
- // calculate innovations
- auxFlowObsInnov = losPred - ofDataDelayed.flowRadXYcomp;
- // calculate observation jacobians
- float t2 = q0*q0;
- float t3 = q1*q1;
- float t4 = q2*q2;
- float t5 = q3*q3;
- float t6 = stateStruct.position.z - terrainState;
- float t7 = 1.0f / (t6*t6);
- float t8 = q0*q3*2.0f;
- float t9 = t2-t3-t4+t5;
- // prevent the state variances from becoming badly conditioned
- Popt = MAX(Popt,1E-6f);
- // calculate observation noise variance from parameter
- float flow_noise_variance = sq(MAX(frontend->_flowNoise, 0.05f));
- // Fuse Y axis data
- // Calculate observation partial derivative
- H_OPT = t7*t9*(-stateStruct.velocity.z*(q0*q2*2.0-q1*q3*2.0)+stateStruct.velocity.x*(t2+t3-t4-t5)+stateStruct.velocity.y*(t8+q1*q2*2.0));
- // calculate innovation variance
- auxFlowObsInnovVar.y = H_OPT * Popt * H_OPT + flow_noise_variance;
- // calculate Kalman gain
- K_OPT = Popt * H_OPT / auxFlowObsInnovVar.y;
- // calculate the innovation consistency test ratio
- auxFlowTestRatio.y = sq(auxFlowObsInnov.y) / (sq(MAX(0.01f * (float)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar.y);
- // don't fuse if optical flow data is outside valid range
- if (auxFlowTestRatio.y < 1.0f) {
- // correct the state
- terrainState -= K_OPT * auxFlowObsInnov.y;
- // constrain the state
- terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
- // update intermediate variables used when fusing the X axis
- t6 = stateStruct.position.z - terrainState;
- t7 = 1.0f / (t6*t6);
- // correct the covariance
- Popt = Popt - K_OPT * H_OPT * Popt;
- // prevent the state variances from becoming badly conditioned
- Popt = MAX(Popt,1E-6f);
- }
- // fuse X axis data
- H_OPT = -t7*t9*(stateStruct.velocity.z*(q0*q1*2.0+q2*q3*2.0)+stateStruct.velocity.y*(t2-t3+t4-t5)-stateStruct.velocity.x*(t8-q1*q2*2.0));
- // calculate innovation variances
- auxFlowObsInnovVar.x = H_OPT * Popt * H_OPT + flow_noise_variance;
- // calculate Kalman gain
- K_OPT = Popt * H_OPT / auxFlowObsInnovVar.x;
- // calculate the innovation consistency test ratio
- auxFlowTestRatio.x = sq(auxFlowObsInnov.x) / (sq(MAX(0.01f * (float)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar.x);
- // don't fuse if optical flow data is outside valid range
- if (auxFlowTestRatio.x < 1.0f) {
- // correct the state
- terrainState -= K_OPT * auxFlowObsInnov.x;
- // constrain the state
- terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
- // correct the covariance
- Popt = Popt - K_OPT * H_OPT * Popt;
- // prevent the state variances from becoming badly conditioned
- Popt = MAX(Popt,1E-6f);
- }
- }
- }
- // stop the performance timer
- hal.util->perf_end(_perf_TerrainOffset);
- }
- /*
- * Fuse angular motion compensated optical flow rates using explicit algebraic equations generated with Matlab symbolic toolbox.
- * The script file used to generate these and other equations in this filter can be found here:
- * https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
- * Requires a valid terrain height estimate.
- */
- void NavEKF2_core::FuseOptFlow()
- {
- Vector24 H_LOS;
- Vector3f relVelSensor;
- Vector14 SH_LOS;
- Vector2 losPred;
- // Copy required states to local variable names
- float q0 = stateStruct.quat[0];
- float q1 = stateStruct.quat[1];
- float q2 = stateStruct.quat[2];
- float q3 = stateStruct.quat[3];
- float vn = stateStruct.velocity.x;
- float ve = stateStruct.velocity.y;
- float vd = stateStruct.velocity.z;
- float pd = stateStruct.position.z;
- // constrain height above ground to be above range measured on ground
- float heightAboveGndEst = MAX((terrainState - pd), rngOnGnd);
- float ptd = pd + heightAboveGndEst;
- // Calculate common expressions for observation jacobians
- SH_LOS[0] = sq(q0) - sq(q1) - sq(q2) + sq(q3);
- SH_LOS[1] = vn*(sq(q0) + sq(q1) - sq(q2) - sq(q3)) - vd*(2*q0*q2 - 2*q1*q3) + ve*(2*q0*q3 + 2*q1*q2);
- SH_LOS[2] = ve*(sq(q0) - sq(q1) + sq(q2) - sq(q3)) + vd*(2*q0*q1 + 2*q2*q3) - vn*(2*q0*q3 - 2*q1*q2);
- SH_LOS[3] = 1/(pd - ptd);
- SH_LOS[4] = vd*SH_LOS[0] - ve*(2*q0*q1 - 2*q2*q3) + vn*(2*q0*q2 + 2*q1*q3);
- SH_LOS[5] = 2.0f*q0*q2 - 2.0f*q1*q3;
- SH_LOS[6] = 2.0f*q0*q1 + 2.0f*q2*q3;
- SH_LOS[7] = q0*q0;
- SH_LOS[8] = q1*q1;
- SH_LOS[9] = q2*q2;
- SH_LOS[10] = q3*q3;
- SH_LOS[11] = q0*q3*2.0f;
- SH_LOS[12] = pd-ptd;
- SH_LOS[13] = 1.0f/(SH_LOS[12]*SH_LOS[12]);
- // Fuse X and Y axis measurements sequentially assuming observation errors are uncorrelated
- for (uint8_t obsIndex=0; obsIndex<=1; obsIndex++) { // fuse X axis data first
- // calculate range from ground plain to centre of sensor fov assuming flat earth
- float range = constrain_float((heightAboveGndEst/prevTnb.c.z),rngOnGnd,1000.0f);
- // correct range for flow sensor offset body frame position offset
- // the corrected value is the predicted range from the sensor focal point to the
- // centre of the image on the ground assuming flat terrain
- Vector3f posOffsetBody = (*ofDataDelayed.body_offset) - accelPosOffset;
- if (!posOffsetBody.is_zero()) {
- Vector3f posOffsetEarth = prevTnb.mul_transpose(posOffsetBody);
- range -= posOffsetEarth.z / prevTnb.c.z;
- }
- // calculate relative velocity in sensor frame including the relative motion due to rotation
- relVelSensor = prevTnb*stateStruct.velocity + ofDataDelayed.bodyRadXYZ % posOffsetBody;
- // divide velocity by range to get predicted angular LOS rates relative to X and Y axes
- losPred[0] = relVelSensor.y/range;
- losPred[1] = -relVelSensor.x/range;
- // calculate observation jacobians and Kalman gains
- memset(&H_LOS[0], 0, sizeof(H_LOS));
- if (obsIndex == 0) {
- H_LOS[0] = SH_LOS[3]*SH_LOS[2]*SH_LOS[6]-SH_LOS[3]*SH_LOS[0]*SH_LOS[4];
- H_LOS[1] = SH_LOS[3]*SH_LOS[2]*SH_LOS[5];
- H_LOS[2] = SH_LOS[3]*SH_LOS[0]*SH_LOS[1];
- H_LOS[3] = SH_LOS[3]*SH_LOS[0]*(SH_LOS[11]-q1*q2*2.0f);
- H_LOS[4] = -SH_LOS[3]*SH_LOS[0]*(SH_LOS[7]-SH_LOS[8]+SH_LOS[9]-SH_LOS[10]);
- H_LOS[5] = -SH_LOS[3]*SH_LOS[0]*SH_LOS[6];
- H_LOS[8] = SH_LOS[2]*SH_LOS[0]*SH_LOS[13];
- float t2 = SH_LOS[3];
- float t3 = SH_LOS[0];
- float t4 = SH_LOS[2];
- float t5 = SH_LOS[6];
- float t100 = t2 * t3 * t5;
- float t6 = SH_LOS[4];
- float t7 = t2*t3*t6;
- float t9 = t2*t4*t5;
- float t8 = t7-t9;
- float t10 = q0*q3*2.0f;
- float t21 = q1*q2*2.0f;
- float t11 = t10-t21;
- float t101 = t2 * t3 * t11;
- float t12 = pd-ptd;
- float t13 = 1.0f/(t12*t12);
- float t104 = t3 * t4 * t13;
- float t14 = SH_LOS[5];
- float t102 = t2 * t4 * t14;
- float t15 = SH_LOS[1];
- float t103 = t2 * t3 * t15;
- float t16 = q0*q0;
- float t17 = q1*q1;
- float t18 = q2*q2;
- float t19 = q3*q3;
- float t20 = t16-t17+t18-t19;
- float t105 = t2 * t3 * t20;
- float t22 = P[1][1]*t102;
- float t23 = P[3][0]*t101;
- float t24 = P[8][0]*t104;
- float t25 = P[1][0]*t102;
- float t26 = P[2][0]*t103;
- float t63 = P[0][0]*t8;
- float t64 = P[5][0]*t100;
- float t65 = P[4][0]*t105;
- float t27 = t23+t24+t25+t26-t63-t64-t65;
- float t28 = P[3][3]*t101;
- float t29 = P[8][3]*t104;
- float t30 = P[1][3]*t102;
- float t31 = P[2][3]*t103;
- float t67 = P[0][3]*t8;
- float t68 = P[5][3]*t100;
- float t69 = P[4][3]*t105;
- float t32 = t28+t29+t30+t31-t67-t68-t69;
- float t33 = t101*t32;
- float t34 = P[3][8]*t101;
- float t35 = P[8][8]*t104;
- float t36 = P[1][8]*t102;
- float t37 = P[2][8]*t103;
- float t70 = P[0][8]*t8;
- float t71 = P[5][8]*t100;
- float t72 = P[4][8]*t105;
- float t38 = t34+t35+t36+t37-t70-t71-t72;
- float t39 = t104*t38;
- float t40 = P[3][1]*t101;
- float t41 = P[8][1]*t104;
- float t42 = P[2][1]*t103;
- float t73 = P[0][1]*t8;
- float t74 = P[5][1]*t100;
- float t75 = P[4][1]*t105;
- float t43 = t22+t40+t41+t42-t73-t74-t75;
- float t44 = t102*t43;
- float t45 = P[3][2]*t101;
- float t46 = P[8][2]*t104;
- float t47 = P[1][2]*t102;
- float t48 = P[2][2]*t103;
- float t76 = P[0][2]*t8;
- float t77 = P[5][2]*t100;
- float t78 = P[4][2]*t105;
- float t49 = t45+t46+t47+t48-t76-t77-t78;
- float t50 = t103*t49;
- float t51 = P[3][5]*t101;
- float t52 = P[8][5]*t104;
- float t53 = P[1][5]*t102;
- float t54 = P[2][5]*t103;
- float t79 = P[0][5]*t8;
- float t80 = P[5][5]*t100;
- float t81 = P[4][5]*t105;
- float t55 = t51+t52+t53+t54-t79-t80-t81;
- float t56 = P[3][4]*t101;
- float t57 = P[8][4]*t104;
- float t58 = P[1][4]*t102;
- float t59 = P[2][4]*t103;
- float t83 = P[0][4]*t8;
- float t84 = P[5][4]*t100;
- float t85 = P[4][4]*t105;
- float t60 = t56+t57+t58+t59-t83-t84-t85;
- float t66 = t8*t27;
- float t82 = t100*t55;
- float t86 = t105*t60;
- float t61 = R_LOS+t33+t39+t44+t50-t66-t82-t86;
- float t62 = 1.0f/t61;
- // calculate innovation variance for X axis observation and protect against a badly conditioned calculation
- if (t61 > R_LOS) {
- t62 = 1.0f/t61;
- faultStatus.bad_yflow = false;
- } else {
- t61 = 0.0f;
- t62 = 1.0f/R_LOS;
- faultStatus.bad_yflow = true;
- return;
- }
- varInnovOptFlow[0] = t61;
- // calculate innovation for X axis observation
- innovOptFlow[0] = losPred[0] - ofDataDelayed.flowRadXYcomp.x;
- // calculate Kalman gains for X-axis observation
- Kfusion[0] = t62*(-P[0][0]*t8-P[0][5]*t100+P[0][3]*t101+P[0][1]*t102+P[0][2]*t103+P[0][8]*t104-P[0][4]*t105);
- Kfusion[1] = t62*(t22-P[1][0]*t8-P[1][5]*t100+P[1][3]*t101+P[1][2]*t103+P[1][8]*t104-P[1][4]*t105);
- Kfusion[2] = t62*(t48-P[2][0]*t8-P[2][5]*t100+P[2][3]*t101+P[2][1]*t102+P[2][8]*t104-P[2][4]*t105);
- Kfusion[3] = t62*(t28-P[3][0]*t8-P[3][5]*t100+P[3][1]*t102+P[3][2]*t103+P[3][8]*t104-P[3][4]*t105);
- Kfusion[4] = t62*(-t85-P[4][0]*t8-P[4][5]*t100+P[4][3]*t101+P[4][1]*t102+P[4][2]*t103+P[4][8]*t104);
- Kfusion[5] = t62*(-t80-P[5][0]*t8+P[5][3]*t101+P[5][1]*t102+P[5][2]*t103+P[5][8]*t104-P[5][4]*t105);
- Kfusion[6] = t62*(-P[6][0]*t8-P[6][5]*t100+P[6][3]*t101+P[6][1]*t102+P[6][2]*t103+P[6][8]*t104-P[6][4]*t105);
- Kfusion[7] = t62*(-P[7][0]*t8-P[7][5]*t100+P[7][3]*t101+P[7][1]*t102+P[7][2]*t103+P[7][8]*t104-P[7][4]*t105);
- Kfusion[8] = t62*(t35-P[8][0]*t8-P[8][5]*t100+P[8][3]*t101+P[8][1]*t102+P[8][2]*t103-P[8][4]*t105);
- Kfusion[9] = t62*(-P[9][0]*t8-P[9][5]*t100+P[9][3]*t101+P[9][1]*t102+P[9][2]*t103+P[9][8]*t104-P[9][4]*t105);
- Kfusion[10] = t62*(-P[10][0]*t8-P[10][5]*t100+P[10][3]*t101+P[10][1]*t102+P[10][2]*t103+P[10][8]*t104-P[10][4]*t105);
- Kfusion[11] = t62*(-P[11][0]*t8-P[11][5]*t100+P[11][3]*t101+P[11][1]*t102+P[11][2]*t103+P[11][8]*t104-P[11][4]*t105);
- Kfusion[12] = t62*(-P[12][0]*t8-P[12][5]*t100+P[12][3]*t101+P[12][1]*t102+P[12][2]*t103+P[12][8]*t104-P[12][4]*t105);
- Kfusion[13] = t62*(-P[13][0]*t8-P[13][5]*t100+P[13][3]*t101+P[13][1]*t102+P[13][2]*t103+P[13][8]*t104-P[13][4]*t105);
- Kfusion[14] = t62*(-P[14][0]*t8-P[14][5]*t100+P[14][3]*t101+P[14][1]*t102+P[14][2]*t103+P[14][8]*t104-P[14][4]*t105);
- Kfusion[15] = t62*(-P[15][0]*t8-P[15][5]*t100+P[15][3]*t101+P[15][1]*t102+P[15][2]*t103+P[15][8]*t104-P[15][4]*t105);
- if (!inhibitWindStates) {
- Kfusion[22] = t62*(-P[22][0]*t8-P[22][5]*t100+P[22][3]*t101+P[22][1]*t102+P[22][2]*t103+P[22][8]*t104-P[22][4]*t105);
- Kfusion[23] = t62*(-P[23][0]*t8-P[23][5]*t100+P[23][3]*t101+P[23][1]*t102+P[23][2]*t103+P[23][8]*t104-P[23][4]*t105);
- } else {
- Kfusion[22] = 0.0f;
- Kfusion[23] = 0.0f;
- }
- if (!inhibitMagStates) {
- Kfusion[16] = t62*(-P[16][0]*t8-P[16][5]*t100+P[16][3]*t101+P[16][1]*t102+P[16][2]*t103+P[16][8]*t104-P[16][4]*t105);
- Kfusion[17] = t62*(-P[17][0]*t8-P[17][5]*t100+P[17][3]*t101+P[17][1]*t102+P[17][2]*t103+P[17][8]*t104-P[17][4]*t105);
- Kfusion[18] = t62*(-P[18][0]*t8-P[18][5]*t100+P[18][3]*t101+P[18][1]*t102+P[18][2]*t103+P[18][8]*t104-P[18][4]*t105);
- Kfusion[19] = t62*(-P[19][0]*t8-P[19][5]*t100+P[19][3]*t101+P[19][1]*t102+P[19][2]*t103+P[19][8]*t104-P[19][4]*t105);
- Kfusion[20] = t62*(-P[20][0]*t8-P[20][5]*t100+P[20][3]*t101+P[20][1]*t102+P[20][2]*t103+P[20][8]*t104-P[20][4]*t105);
- Kfusion[21] = t62*(-P[21][0]*t8-P[21][5]*t100+P[21][3]*t101+P[21][1]*t102+P[21][2]*t103+P[21][8]*t104-P[21][4]*t105);
- } else {
- for (uint8_t i = 16; i <= 21; i++) {
- Kfusion[i] = 0.0f;
- }
- }
- } else {
- H_LOS[0] = -SH_LOS[3]*SH_LOS[6]*SH_LOS[1];
- H_LOS[1] = -SH_LOS[3]*SH_LOS[0]*SH_LOS[4]-SH_LOS[3]*SH_LOS[1]*SH_LOS[5];
- H_LOS[2] = SH_LOS[3]*SH_LOS[2]*SH_LOS[0];
- H_LOS[3] = SH_LOS[3]*SH_LOS[0]*(SH_LOS[7]+SH_LOS[8]-SH_LOS[9]-SH_LOS[10]);
- H_LOS[4] = SH_LOS[3]*SH_LOS[0]*(SH_LOS[11]+q1*q2*2.0f);
- H_LOS[5] = -SH_LOS[3]*SH_LOS[0]*SH_LOS[5];
- H_LOS[8] = -SH_LOS[0]*SH_LOS[1]*SH_LOS[13];
- float t2 = SH_LOS[3];
- float t3 = SH_LOS[0];
- float t4 = SH_LOS[1];
- float t5 = SH_LOS[5];
- float t100 = t2 * t3 * t5;
- float t6 = SH_LOS[4];
- float t7 = t2*t3*t6;
- float t8 = t2*t4*t5;
- float t9 = t7+t8;
- float t10 = q0*q3*2.0f;
- float t11 = q1*q2*2.0f;
- float t12 = t10+t11;
- float t101 = t2 * t3 * t12;
- float t13 = pd-ptd;
- float t14 = 1.0f/(t13*t13);
- float t104 = t3 * t4 * t14;
- float t15 = SH_LOS[6];
- float t105 = t2 * t4 * t15;
- float t16 = SH_LOS[2];
- float t102 = t2 * t3 * t16;
- float t17 = q0*q0;
- float t18 = q1*q1;
- float t19 = q2*q2;
- float t20 = q3*q3;
- float t21 = t17+t18-t19-t20;
- float t103 = t2 * t3 * t21;
- float t22 = P[0][0]*t105;
- float t23 = P[1][1]*t9;
- float t24 = P[8][1]*t104;
- float t25 = P[0][1]*t105;
- float t26 = P[5][1]*t100;
- float t64 = P[4][1]*t101;
- float t65 = P[2][1]*t102;
- float t66 = P[3][1]*t103;
- float t27 = t23+t24+t25+t26-t64-t65-t66;
- float t28 = t9*t27;
- float t29 = P[1][4]*t9;
- float t30 = P[8][4]*t104;
- float t31 = P[0][4]*t105;
- float t32 = P[5][4]*t100;
- float t67 = P[4][4]*t101;
- float t68 = P[2][4]*t102;
- float t69 = P[3][4]*t103;
- float t33 = t29+t30+t31+t32-t67-t68-t69;
- float t34 = P[1][8]*t9;
- float t35 = P[8][8]*t104;
- float t36 = P[0][8]*t105;
- float t37 = P[5][8]*t100;
- float t71 = P[4][8]*t101;
- float t72 = P[2][8]*t102;
- float t73 = P[3][8]*t103;
- float t38 = t34+t35+t36+t37-t71-t72-t73;
- float t39 = t104*t38;
- float t40 = P[1][0]*t9;
- float t41 = P[8][0]*t104;
- float t42 = P[5][0]*t100;
- float t74 = P[4][0]*t101;
- float t75 = P[2][0]*t102;
- float t76 = P[3][0]*t103;
- float t43 = t22+t40+t41+t42-t74-t75-t76;
- float t44 = t105*t43;
- float t45 = P[1][2]*t9;
- float t46 = P[8][2]*t104;
- float t47 = P[0][2]*t105;
- float t48 = P[5][2]*t100;
- float t63 = P[2][2]*t102;
- float t77 = P[4][2]*t101;
- float t78 = P[3][2]*t103;
- float t49 = t45+t46+t47+t48-t63-t77-t78;
- float t50 = P[1][5]*t9;
- float t51 = P[8][5]*t104;
- float t52 = P[0][5]*t105;
- float t53 = P[5][5]*t100;
- float t80 = P[4][5]*t101;
- float t81 = P[2][5]*t102;
- float t82 = P[3][5]*t103;
- float t54 = t50+t51+t52+t53-t80-t81-t82;
- float t55 = t100*t54;
- float t56 = P[1][3]*t9;
- float t57 = P[8][3]*t104;
- float t58 = P[0][3]*t105;
- float t59 = P[5][3]*t100;
- float t83 = P[4][3]*t101;
- float t84 = P[2][3]*t102;
- float t85 = P[3][3]*t103;
- float t60 = t56+t57+t58+t59-t83-t84-t85;
- float t70 = t101*t33;
- float t79 = t102*t49;
- float t86 = t103*t60;
- float t61 = R_LOS+t28+t39+t44+t55-t70-t79-t86;
- float t62 = 1.0f/t61;
- // calculate innovation variance for Y axis observation and protect against a badly conditioned calculation
- if (t61 > R_LOS) {
- t62 = 1.0f/t61;
- faultStatus.bad_yflow = false;
- } else {
- t61 = 0.0f;
- t62 = 1.0f/R_LOS;
- faultStatus.bad_yflow = true;
- return;
- }
- varInnovOptFlow[1] = t61;
- // calculate innovation for Y observation
- innovOptFlow[1] = losPred[1] - ofDataDelayed.flowRadXYcomp.y;
- // calculate Kalman gains for the Y-axis observation
- Kfusion[0] = -t62*(t22+P[0][1]*t9+P[0][5]*t100-P[0][4]*t101-P[0][2]*t102-P[0][3]*t103+P[0][8]*t104);
- Kfusion[1] = -t62*(t23+P[1][5]*t100+P[1][0]*t105-P[1][4]*t101-P[1][2]*t102-P[1][3]*t103+P[1][8]*t104);
- Kfusion[2] = -t62*(-t63+P[2][1]*t9+P[2][5]*t100+P[2][0]*t105-P[2][4]*t101-P[2][3]*t103+P[2][8]*t104);
- Kfusion[3] = -t62*(-t85+P[3][1]*t9+P[3][5]*t100+P[3][0]*t105-P[3][4]*t101-P[3][2]*t102+P[3][8]*t104);
- Kfusion[4] = -t62*(-t67+P[4][1]*t9+P[4][5]*t100+P[4][0]*t105-P[4][2]*t102-P[4][3]*t103+P[4][8]*t104);
- Kfusion[5] = -t62*(t53+P[5][1]*t9+P[5][0]*t105-P[5][4]*t101-P[5][2]*t102-P[5][3]*t103+P[5][8]*t104);
- Kfusion[6] = -t62*(P[6][1]*t9+P[6][5]*t100+P[6][0]*t105-P[6][4]*t101-P[6][2]*t102-P[6][3]*t103+P[6][8]*t104);
- Kfusion[7] = -t62*(P[7][1]*t9+P[7][5]*t100+P[7][0]*t105-P[7][4]*t101-P[7][2]*t102-P[7][3]*t103+P[7][8]*t104);
- Kfusion[8] = -t62*(t35+P[8][1]*t9+P[8][5]*t100+P[8][0]*t105-P[8][4]*t101-P[8][2]*t102-P[8][3]*t103);
- Kfusion[9] = -t62*(P[9][1]*t9+P[9][5]*t100+P[9][0]*t105-P[9][4]*t101-P[9][2]*t102-P[9][3]*t103+P[9][8]*t104);
- Kfusion[10] = -t62*(P[10][1]*t9+P[10][5]*t100+P[10][0]*t105-P[10][4]*t101-P[10][2]*t102-P[10][3]*t103+P[10][8]*t104);
- Kfusion[11] = -t62*(P[11][1]*t9+P[11][5]*t100+P[11][0]*t105-P[11][4]*t101-P[11][2]*t102-P[11][3]*t103+P[11][8]*t104);
- Kfusion[12] = -t62*(P[12][1]*t9+P[12][5]*t100+P[12][0]*t105-P[12][4]*t101-P[12][2]*t102-P[12][3]*t103+P[12][8]*t104);
- Kfusion[13] = -t62*(P[13][1]*t9+P[13][5]*t100+P[13][0]*t105-P[13][4]*t101-P[13][2]*t102-P[13][3]*t103+P[13][8]*t104);
- Kfusion[14] = -t62*(P[14][1]*t9+P[14][5]*t100+P[14][0]*t105-P[14][4]*t101-P[14][2]*t102-P[14][3]*t103+P[14][8]*t104);
- Kfusion[15] = -t62*(P[15][1]*t9+P[15][5]*t100+P[15][0]*t105-P[15][4]*t101-P[15][2]*t102-P[15][3]*t103+P[15][8]*t104);
- if (!inhibitWindStates) {
- Kfusion[22] = -t62*(P[22][1]*t9+P[22][5]*t100+P[22][0]*t105-P[22][4]*t101-P[22][2]*t102-P[22][3]*t103+P[22][8]*t104);
- Kfusion[23] = -t62*(P[23][1]*t9+P[23][5]*t100+P[23][0]*t105-P[23][4]*t101-P[23][2]*t102-P[23][3]*t103+P[23][8]*t104);
- } else {
- Kfusion[22] = 0.0f;
- Kfusion[23] = 0.0f;
- }
- if (!inhibitMagStates) {
- Kfusion[16] = -t62*(P[16][1]*t9+P[16][5]*t100+P[16][0]*t105-P[16][4]*t101-P[16][2]*t102-P[16][3]*t103+P[16][8]*t104);
- Kfusion[17] = -t62*(P[17][1]*t9+P[17][5]*t100+P[17][0]*t105-P[17][4]*t101-P[17][2]*t102-P[17][3]*t103+P[17][8]*t104);
- Kfusion[18] = -t62*(P[18][1]*t9+P[18][5]*t100+P[18][0]*t105-P[18][4]*t101-P[18][2]*t102-P[18][3]*t103+P[18][8]*t104);
- Kfusion[19] = -t62*(P[19][1]*t9+P[19][5]*t100+P[19][0]*t105-P[19][4]*t101-P[19][2]*t102-P[19][3]*t103+P[19][8]*t104);
- Kfusion[20] = -t62*(P[20][1]*t9+P[20][5]*t100+P[20][0]*t105-P[20][4]*t101-P[20][2]*t102-P[20][3]*t103+P[20][8]*t104);
- Kfusion[21] = -t62*(P[21][1]*t9+P[21][5]*t100+P[21][0]*t105-P[21][4]*t101-P[21][2]*t102-P[21][3]*t103+P[21][8]*t104);
- } else {
- for (uint8_t i = 16; i <= 21; i++) {
- Kfusion[i] = 0.0f;
- }
- }
- }
- // calculate the innovation consistency test ratio
- flowTestRatio[obsIndex] = sq(innovOptFlow[obsIndex]) / (sq(MAX(0.01f * (float)frontend->_flowInnovGate, 1.0f)) * varInnovOptFlow[obsIndex]);
- // Check the innovation for consistency and don't fuse if out of bounds or flow is too fast to be reliable
- if ((flowTestRatio[obsIndex]) < 1.0f && (ofDataDelayed.flowRadXY.x < frontend->_maxFlowRate) && (ofDataDelayed.flowRadXY.y < frontend->_maxFlowRate)) {
- // record the last time observations were accepted for fusion
- prevFlowFuseTime_ms = imuSampleTime_ms;
- // correct the covariance P = (I - K*H)*P
- // take advantage of the empty columns in KH to reduce the
- // number of operations
- for (unsigned i = 0; i<=stateIndexLim; i++) {
- for (unsigned j = 0; j<=5; j++) {
- KH[i][j] = Kfusion[i] * H_LOS[j];
- }
- for (unsigned j = 6; j<=7; j++) {
- KH[i][j] = 0.0f;
- }
- KH[i][8] = Kfusion[i] * H_LOS[8];
- for (unsigned j = 9; j<=23; j++) {
- KH[i][j] = 0.0f;
- }
- }
- for (unsigned j = 0; j<=stateIndexLim; j++) {
- for (unsigned i = 0; i<=stateIndexLim; i++) {
- ftype res = 0;
- res += KH[i][0] * P[0][j];
- res += KH[i][1] * P[1][j];
- res += KH[i][2] * P[2][j];
- res += KH[i][3] * P[3][j];
- res += KH[i][4] * P[4][j];
- res += KH[i][5] * P[5][j];
- res += KH[i][8] * P[8][j];
- KHP[i][j] = res;
- }
- }
- // Check that we are not going to drive any variances negative and skip the update if so
- bool healthyFusion = true;
- for (uint8_t i= 0; i<=stateIndexLim; i++) {
- if (KHP[i][i] > P[i][i]) {
- healthyFusion = false;
- }
- }
- if (healthyFusion) {
- // update the covariance matrix
- for (uint8_t i= 0; i<=stateIndexLim; i++) {
- for (uint8_t j= 0; j<=stateIndexLim; j++) {
- P[i][j] = P[i][j] - KHP[i][j];
- }
- }
- // force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
- ForceSymmetry();
- ConstrainVariances();
- // zero the attitude error state - by definition it is assumed to be zero before each observation fusion
- stateStruct.angErr.zero();
- // correct the state vector
- for (uint8_t j= 0; j<=stateIndexLim; j++) {
- statesArray[j] = statesArray[j] - Kfusion[j] * innovOptFlow[obsIndex];
- }
- // the first 3 states represent the angular misalignment vector. This is
- // is used to correct the estimated quaternion on the current time step
- stateStruct.quat.rotate(stateStruct.angErr);
- } else {
- // record bad axis
- if (obsIndex == 0) {
- faultStatus.bad_xflow = true;
- } else if (obsIndex == 1) {
- faultStatus.bad_yflow = true;
- }
- }
- }
- }
- }
- /********************************************************
- * MISC FUNCTIONS *
- ********************************************************/
|