123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- /*
- * matrix3.cpp
- * Copyright (C) Andrew Tridgell 2012
- *
- * This file is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This file is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- * See the GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #pragma GCC optimize("O2")
- #include "AP_Math.h"
- // create a rotation matrix given some euler angles
- // this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
- template <typename T>
- void Matrix3<T>::from_euler(float roll, float pitch, float yaw)
- {
- const float cp = cosf(pitch);
- const float sp = sinf(pitch);
- const float sr = sinf(roll);
- const float cr = cosf(roll);
- const float sy = sinf(yaw);
- const float cy = cosf(yaw);
- a.x = cp * cy;
- a.y = (sr * sp * cy) - (cr * sy);
- a.z = (cr * sp * cy) + (sr * sy);
- b.x = cp * sy;
- b.y = (sr * sp * sy) + (cr * cy);
- b.z = (cr * sp * sy) - (sr * cy);
- c.x = -sp;
- c.y = sr * cp;
- c.z = cr * cp;
- }
- // calculate euler angles from a rotation matrix
- // this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
- template <typename T>
- void Matrix3<T>::to_euler(float *roll, float *pitch, float *yaw) const
- {
- if (pitch != nullptr) {
- *pitch = -safe_asin(c.x);
- }
- if (roll != nullptr) {
- *roll = atan2f(c.y, c.z);
- }
- if (yaw != nullptr) {
- *yaw = atan2f(b.x, a.x);
- }
- }
- template <typename T>
- void Matrix3<T>::from_rotation(enum Rotation rotation)
- {
- (*this).a(1,0,0);
- (*this).b(0,1,0);
- (*this).c(0,0,1);
- (*this).a.rotate(rotation);
- (*this).b.rotate(rotation);
- (*this).c.rotate(rotation);
- (*this).transpose();
- }
- /*
- calculate Euler angles (312 convention) for the matrix.
- See http://www.atacolorado.com/eulersequences.doc
- vector is returned in r, p, y order
- */
- template <typename T>
- Vector3<T> Matrix3<T>::to_euler312() const
- {
- return Vector3<T>(asinf(c.y),
- atan2f(-c.x, c.z),
- atan2f(-a.y, b.y));
- }
- /*
- fill the matrix from Euler angles in radians in 312 convention
- */
- template <typename T>
- void Matrix3<T>::from_euler312(float roll, float pitch, float yaw)
- {
- const float c3 = cosf(pitch);
- const float s3 = sinf(pitch);
- const float s2 = sinf(roll);
- const float c2 = cosf(roll);
- const float s1 = sinf(yaw);
- const float c1 = cosf(yaw);
- a.x = c1 * c3 - s1 * s2 * s3;
- b.y = c1 * c2;
- c.z = c3 * c2;
- a.y = -c2*s1;
- a.z = s3*c1 + c3*s2*s1;
- b.x = c3*s1 + s3*s2*c1;
- b.z = s1*s3 - s2*c1*c3;
- c.x = -s3*c2;
- c.y = s2;
- }
- // apply an additional rotation from a body frame gyro vector
- // to a rotation matrix.
- template <typename T>
- void Matrix3<T>::rotate(const Vector3<T> &g)
- {
- (*this) += Matrix3<T>{
- a.y * g.z - a.z * g.y, a.z * g.x - a.x * g.z, a.x * g.y - a.y * g.x,
- b.y * g.z - b.z * g.y, b.z * g.x - b.x * g.z, b.x * g.y - b.y * g.x,
- c.y * g.z - c.z * g.y, c.z * g.x - c.x * g.z, c.x * g.y - c.y * g.x
- };
- }
- /*
- re-normalise a rotation matrix
- */
- template <typename T>
- void Matrix3<T>::normalize(void)
- {
- const float error = a * b;
- const Vector3<T> t0 = a - (b * (0.5f * error));
- const Vector3<T> t1 = b - (a * (0.5f * error));
- const Vector3<T> t2 = t0 % t1;
- a = t0 * (1.0f / t0.length());
- b = t1 * (1.0f / t1.length());
- c = t2 * (1.0f / t2.length());
- }
- // multiplication by a vector
- template <typename T>
- Vector3<T> Matrix3<T>::operator *(const Vector3<T> &v) const
- {
- return Vector3<T>(a.x * v.x + a.y * v.y + a.z * v.z,
- b.x * v.x + b.y * v.y + b.z * v.z,
- c.x * v.x + c.y * v.y + c.z * v.z);
- }
- // multiplication by a vector, extracting only the xy components
- template <typename T>
- Vector2<T> Matrix3<T>::mulXY(const Vector3<T> &v) const
- {
- return Vector2<T>(a.x * v.x + a.y * v.y + a.z * v.z,
- b.x * v.x + b.y * v.y + b.z * v.z);
- }
- // multiplication of transpose by a vector
- template <typename T>
- Vector3<T> Matrix3<T>::mul_transpose(const Vector3<T> &v) const
- {
- return Vector3<T>(a.x * v.x + b.x * v.y + c.x * v.z,
- a.y * v.x + b.y * v.y + c.y * v.z,
- a.z * v.x + b.z * v.y + c.z * v.z);
- }
- // multiplication by another Matrix3<T>
- template <typename T>
- Matrix3<T> Matrix3<T>::operator *(const Matrix3<T> &m) const
- {
- Matrix3<T> temp (Vector3<T>(a.x * m.a.x + a.y * m.b.x + a.z * m.c.x,
- a.x * m.a.y + a.y * m.b.y + a.z * m.c.y,
- a.x * m.a.z + a.y * m.b.z + a.z * m.c.z),
- Vector3<T>(b.x * m.a.x + b.y * m.b.x + b.z * m.c.x,
- b.x * m.a.y + b.y * m.b.y + b.z * m.c.y,
- b.x * m.a.z + b.y * m.b.z + b.z * m.c.z),
- Vector3<T>(c.x * m.a.x + c.y * m.b.x + c.z * m.c.x,
- c.x * m.a.y + c.y * m.b.y + c.z * m.c.y,
- c.x * m.a.z + c.y * m.b.z + c.z * m.c.z));
- return temp;
- }
- template <typename T>
- Matrix3<T> Matrix3<T>::transposed(void) const
- {
- return Matrix3<T>(Vector3<T>(a.x, b.x, c.x),
- Vector3<T>(a.y, b.y, c.y),
- Vector3<T>(a.z, b.z, c.z));
- }
- template <typename T>
- T Matrix3<T>::det() const
- {
- return a.x * (b.y * c.z - b.z * c.y) +
- a.y * (b.z * c.x - b.x * c.z) +
- a.z * (b.x * c.y - b.y * c.x);
- }
- template <typename T>
- bool Matrix3<T>::inverse(Matrix3<T>& inv) const
- {
- const T d = det();
- if (is_zero(d)) {
- return false;
- }
- inv.a.x = (b.y * c.z - c.y * b.z) / d;
- inv.a.y = (a.z * c.y - a.y * c.z) / d;
- inv.a.z = (a.y * b.z - a.z * b.y) / d;
- inv.b.x = (b.z * c.x - b.x * c.z) / d;
- inv.b.y = (a.x * c.z - a.z * c.x) / d;
- inv.b.z = (b.x * a.z - a.x * b.z) / d;
- inv.c.x = (b.x * c.y - c.x * b.y) / d;
- inv.c.y = (c.x * a.y - a.x * c.y) / d;
- inv.c.z = (a.x * b.y - b.x * a.y) / d;
- return true;
- }
- template <typename T>
- bool Matrix3<T>::invert()
- {
- Matrix3<T> inv;
- bool success = inverse(inv);
- if (success) {
- *this = inv;
- }
- return success;
- }
- template <typename T>
- void Matrix3<T>::zero(void)
- {
- a.x = a.y = a.z = 0;
- b.x = b.y = b.z = 0;
- c.x = c.y = c.z = 0;
- }
- // create rotation matrix for rotation about the vector v by angle theta
- // See: http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/
- template <typename T>
- void Matrix3<T>::from_axis_angle(const Vector3<T> &v, float theta)
- {
- const float C = cosf(theta);
- const float S = sinf(theta);
- const float t = 1.0f - C;
- const Vector3f normv = v.normalized();
- const float x = normv.x;
- const float y = normv.y;
- const float z = normv.z;
- a.x = t*x*x + C;
- a.y = t*x*y - z*S;
- a.z = t*x*z + y*S;
- b.x = t*x*y + z*S;
- b.y = t*y*y + C;
- b.z = t*y*z - x*S;
- c.x = t*x*z - y*S;
- c.y = t*y*z + x*S;
- c.z = t*z*z + C;
- }
- // only define for float
- template void Matrix3<float>::zero(void);
- template void Matrix3<float>::rotate(const Vector3<float> &g);
- template void Matrix3<float>::normalize(void);
- template void Matrix3<float>::from_euler(float roll, float pitch, float yaw);
- template void Matrix3<float>::to_euler(float *roll, float *pitch, float *yaw) const;
- template void Matrix3<float>::from_rotation(enum Rotation rotation);
- template void Matrix3<float>::from_euler312(float roll, float pitch, float yaw);
- template void Matrix3<float>::from_axis_angle(const Vector3<float> &v, float theta);
- template Vector3<float> Matrix3<float>::to_euler312(void) const;
- template Vector3<float> Matrix3<float>::operator *(const Vector3<float> &v) const;
- template Vector3<float> Matrix3<float>::mul_transpose(const Vector3<float> &v) const;
- template Matrix3<float> Matrix3<float>::operator *(const Matrix3<float> &m) const;
- template Matrix3<float> Matrix3<float>::transposed(void) const;
- template float Matrix3<float>::det() const;
- template bool Matrix3<float>::inverse(Matrix3<float>& inv) const;
- template bool Matrix3<float>::invert();
- template Vector2<float> Matrix3<float>::mulXY(const Vector3<float> &v) const;
- template void Matrix3<double>::zero(void);
- template void Matrix3<double>::rotate(const Vector3<double> &g);
- template void Matrix3<double>::from_euler(float roll, float pitch, float yaw);
- template void Matrix3<double>::to_euler(float *roll, float *pitch, float *yaw) const;
- template Vector3<double> Matrix3<double>::operator *(const Vector3<double> &v) const;
- template Vector3<double> Matrix3<double>::mul_transpose(const Vector3<double> &v) const;
- template Matrix3<double> Matrix3<double>::operator *(const Matrix3<double> &m) const;
- template Matrix3<double> Matrix3<double>::transposed(void) const;
- template double Matrix3<double>::det() const;
- template bool Matrix3<double>::inverse(Matrix3<double>& inv) const;
- template bool Matrix3<double>::invert();
- template Vector2<double> Matrix3<double>::mulXY(const Vector3<double> &v) const;
|