123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- /*
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include <stdlib.h>
- #include <AP_HAL/AP_HAL.h>
- #include <GCS_MAVLink/GCS.h>
- #include "AP_MotorsHeli_Quad.h"
- extern const AP_HAL::HAL& hal;
- const AP_Param::GroupInfo AP_MotorsHeli_Quad::var_info[] = {
- AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
- // Indices 1-3 were used by RSC_PWM_MIN, RSC_PWM_MAX and RSC_PWM_REV and should not be used
- AP_GROUPEND
- };
- #define QUAD_SERVO_MAX_ANGLE 4500
- // set update rate to motors - a value in hertz
- void AP_MotorsHeli_Quad::set_update_rate( uint16_t speed_hz )
- {
- // record requested speed
- _speed_hz = speed_hz;
- // setup fast channels
- uint32_t mask = 0;
- for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
- mask |= 1U << (AP_MOTORS_MOT_1+i);
- }
- rc_set_freq(mask, _speed_hz);
- }
- // init_outputs
- bool AP_MotorsHeli_Quad::init_outputs()
- {
- if (_flags.initialised_ok) {
- return true;
- }
- for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
- add_motor_num(CH_1+i);
- SRV_Channels::set_angle(SRV_Channels::get_motor_function(i), QUAD_SERVO_MAX_ANGLE);
- }
- // set rotor servo range
- _main_rotor.init_servo();
- _flags.initialised_ok = true;
- return true;
- }
- // output_test_seq - spin a motor at the pwm value specified
- // motor_seq is the motor's sequence number from 1 to the number of motors on the frame
- // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
- void AP_MotorsHeli_Quad::output_test_seq(uint8_t motor_seq, int16_t pwm)
- {
- // exit immediately if not armed
- if (!armed()) {
- return;
- }
- // output to motors and servos
- switch (motor_seq) {
- case 1 ... AP_MOTORS_HELI_QUAD_NUM_MOTORS:
- rc_write(AP_MOTORS_MOT_1 + (motor_seq-1), pwm);
- break;
- case AP_MOTORS_HELI_QUAD_NUM_MOTORS+1:
- // main rotor
- rc_write(AP_MOTORS_HELI_RSC, pwm);
- break;
- default:
- // do nothing
- break;
- }
- }
- // set_desired_rotor_speed
- void AP_MotorsHeli_Quad::set_desired_rotor_speed(float desired_speed)
- {
- _main_rotor.set_desired_speed(desired_speed);
- }
- // set_rotor_rpm - used for governor with speed sensor
- void AP_MotorsHeli_Quad::set_rpm(float rotor_rpm)
- {
- _main_rotor.set_rotor_rpm(rotor_rpm);
- }
- // calculate_armed_scalars
- void AP_MotorsHeli_Quad::calculate_armed_scalars()
- {
- // Set rsc mode specific parameters
- if (_main_rotor._rsc_mode.get() == ROTOR_CONTROL_MODE_OPEN_LOOP_POWER_OUTPUT || _main_rotor._rsc_mode.get() == ROTOR_CONTROL_MODE_CLOSED_LOOP_POWER_OUTPUT) {
- _main_rotor.set_throttle_curve();
- }
- // keeps user from changing RSC mode while armed
- if (_main_rotor._rsc_mode.get() != _main_rotor.get_control_mode()) {
- _main_rotor.reset_rsc_mode_param();
- gcs().send_text(MAV_SEVERITY_CRITICAL, "RSC control mode change failed");
- _heliflags.save_rsc_mode = true;
- }
- // saves rsc mode parameter when disarmed if it had been reset while armed
- if (_heliflags.save_rsc_mode && !_flags.armed) {
- _main_rotor._rsc_mode.save();
- _heliflags.save_rsc_mode = false;
- }
- }
- // calculate_scalars
- void AP_MotorsHeli_Quad::calculate_scalars()
- {
- // range check collective min, max and mid
- if( _collective_min >= _collective_max ) {
- _collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN;
- _collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX;
- }
- _collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
- // calculate collective mid point as a number from 0 to 1000
- _collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min));
- // calculate factors based on swash type and servo position
- calculate_roll_pitch_collective_factors();
- // set mode of main rotor controller and trigger recalculation of scalars
- _main_rotor.set_control_mode(static_cast<RotorControlMode>(_main_rotor._rsc_mode.get()));
- calculate_armed_scalars();
- }
- // calculate_swash_factors - calculate factors based on swash type and servo position
- void AP_MotorsHeli_Quad::calculate_roll_pitch_collective_factors()
- {
- // assume X quad layout, with motors at 45, 135, 225 and 315 degrees
- // order FrontRight, RearLeft, FrontLeft, RearLeft
- const float angles[AP_MOTORS_HELI_QUAD_NUM_MOTORS] = { 45, 225, 315, 135 };
- const bool x_clockwise[AP_MOTORS_HELI_QUAD_NUM_MOTORS] = { false, false, true, true };
- const float cos45 = cosf(radians(45));
- for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
- bool clockwise = x_clockwise[i];
- if (_frame_type == MOTOR_FRAME_TYPE_H) {
- // reverse yaw for H frame
- clockwise = !clockwise;
- }
- _rollFactor[CH_1+i] = -0.5*sinf(radians(angles[i]))/cos45;
- _pitchFactor[CH_1+i] = 0.5*cosf(radians(angles[i]))/cos45;
- _yawFactor[CH_1+i] = clockwise?-0.5:0.5;
- _collectiveFactor[CH_1+i] = 1;
- }
- }
- // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
- // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
- uint16_t AP_MotorsHeli_Quad::get_motor_mask()
- {
- uint16_t mask = 0;
- for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
- mask |= 1U << (AP_MOTORS_MOT_1+i);
- }
- mask |= 1U << AP_MOTORS_HELI_RSC;
- return mask;
- }
- // update_motor_controls - sends commands to motor controllers
- void AP_MotorsHeli_Quad::update_motor_control(RotorControlState state)
- {
- // Send state update to motors
- _main_rotor.output(state);
- if (state == ROTOR_CONTROL_STOP) {
- // set engine run enable aux output to not run position to kill engine when disarmed
- SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MIN);
- } else {
- // else if armed, set engine run enable output to run position
- SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MAX);
- }
- // Check if rotors are run-up
- _heliflags.rotor_runup_complete = _main_rotor.is_runup_complete();
- }
- //
- // move_actuators - moves swash plate to attitude of parameters passed in
- // - expected ranges:
- // roll : -1 ~ +1
- // pitch: -1 ~ +1
- // collective: 0 ~ 1
- // yaw: -1 ~ +1
- //
- void AP_MotorsHeli_Quad::move_actuators(float roll_out, float pitch_out, float collective_in, float yaw_out)
- {
- // initialize limits flag
- limit.roll = false;
- limit.pitch = false;
- limit.yaw = false;
- limit.throttle_lower = false;
- limit.throttle_upper = false;
- // constrain collective input
- float collective_out = collective_in;
- if (collective_out <= 0.0f) {
- collective_out = 0.0f;
- limit.throttle_lower = true;
- }
- if (collective_out >= 1.0f) {
- collective_out = 1.0f;
- limit.throttle_upper = true;
- }
- // ensure not below landed/landing collective
- if (_heliflags.landing_collective && collective_out < _collective_mid_pct) {
- collective_out = _collective_mid_pct;
- limit.throttle_lower = true;
- }
- float collective_range = (_collective_max - _collective_min)*0.001f;
- if (_heliflags.inverted_flight) {
- collective_out = 1 - collective_out;
- }
- // feed power estimate into main rotor controller
- _main_rotor.set_collective(fabsf(collective_out));
- // scale collective to -1 to 1
- collective_out = collective_out*2-1;
- // reserve some collective for attitude control
- collective_out *= collective_range;
- for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
- _out[i] =
- _rollFactor[CH_1+i] * roll_out +
- _pitchFactor[CH_1+i] * pitch_out +
- _collectiveFactor[CH_1+i] * collective_out;
- }
- // see if we need to scale down yaw_out
- for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
- float y = _yawFactor[CH_1+i] * yaw_out;
- if (_out[i] < 0) {
- // the slope of the yaw effect changes at zero collective
- y = -y;
- }
- if (_out[i] * (_out[i] + y) < 0) {
- // applying this yaw demand would change the sign of the
- // collective, which means the yaw would not be applied
- // evenly. We scale down the overall yaw demand to prevent
- // it crossing over zero
- float s = -(_out[i] / y);
- yaw_out *= s;
- }
- }
- // now apply the yaw correction
- for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
- float y = _yawFactor[CH_1+i] * yaw_out;
- if (_out[i] < 0) {
- // the slope of the yaw effect changes at zero collective
- y = -y;
- }
- _out[i] += y;
- }
- }
- void AP_MotorsHeli_Quad::output_to_motors()
- {
- if (!_flags.initialised_ok) {
- return;
- }
- // move the servos
- for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
- rc_write_angle(AP_MOTORS_MOT_1+i, _out[i] * QUAD_SERVO_MAX_ANGLE);
- }
- switch (_spool_state) {
- case SpoolState::SHUT_DOWN:
- // sends minimum values out to the motors
- update_motor_control(ROTOR_CONTROL_STOP);
- break;
- case SpoolState::GROUND_IDLE:
- // sends idle output to motors when armed. rotor could be static or turning (autorotation)
- update_motor_control(ROTOR_CONTROL_IDLE);
- break;
- case SpoolState::SPOOLING_UP:
- case SpoolState::THROTTLE_UNLIMITED:
- // set motor output based on thrust requests
- update_motor_control(ROTOR_CONTROL_ACTIVE);
- break;
- case SpoolState::SPOOLING_DOWN:
- // sends idle output to motors and wait for rotor to stop
- update_motor_control(ROTOR_CONTROL_IDLE);
- break;
- }
- }
- // servo_test - move servos through full range of movement
- void AP_MotorsHeli_Quad::servo_test()
- {
- // not implemented
- }
|