123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440 |
- /*
- * matrix3.cpp
- * Copyright (C) Siddharth Bharat Purohit, 3DRobotics Inc. 2015
- *
- * This file is free software: you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This file is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- * See the GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #pragma GCC optimize("O2")
- #include <AP_HAL/AP_HAL.h>
- #include <stdio.h>
- #if CONFIG_HAL_BOARD == HAL_BOARD_SITL
- #include <fenv.h>
- #endif
- #include <AP_Math/AP_Math.h>
- extern const AP_HAL::HAL& hal;
- //TODO: use higher precision datatypes to achieve more accuracy for matrix algebra operations
- /*
- * Does matrix multiplication of two regular/square matrices
- *
- * @param A, Matrix A
- * @param B, Matrix B
- * @param n, dimemsion of square matrices
- * @returns multiplied matrix i.e. A*B
- */
- float* mat_mul(float *A, float *B, uint8_t n)
- {
- float* ret = new float[n*n];
- memset(ret,0.0f,n*n*sizeof(float));
- for(uint8_t i = 0; i < n; i++) {
- for(uint8_t j = 0; j < n; j++) {
- for(uint8_t k = 0;k < n; k++) {
- ret[i*n + j] += A[i*n + k] * B[k*n + j];
- }
- }
- }
- return ret;
- }
- static inline void swap(float &a, float &b)
- {
- float c;
- c = a;
- a = b;
- b = c;
- }
- /*
- * calculates pivot matrix such that all the larger elements in the row are on diagonal
- *
- * @param A, input matrix matrix
- * @param pivot
- * @param n, dimenstion of square matrix
- * @returns false = matrix is Singular or non positive definite, true = matrix inversion successful
- */
- static void mat_pivot(float* A, float* pivot, uint8_t n)
- {
- for(uint8_t i = 0;i<n;i++){
- for(uint8_t j=0;j<n;j++) {
- pivot[i*n+j] = static_cast<float>(i==j);
- }
- }
- for(uint8_t i = 0;i < n; i++) {
- uint8_t max_j = i;
- for(uint8_t j=i;j<n;j++){
- if(fabsf(A[j*n + i]) > fabsf(A[max_j*n + i])) {
- max_j = j;
- }
- }
- if(max_j != i) {
- for(uint8_t k = 0; k < n; k++) {
- swap(pivot[i*n + k], pivot[max_j*n + k]);
- }
- }
- }
- }
- /*
- * calculates matrix inverse of Lower trangular matrix using forward substitution
- *
- * @param L, lower triangular matrix
- * @param out, Output inverted lower triangular matrix
- * @param n, dimension of matrix
- */
- static void mat_forward_sub(float *L, float *out, uint8_t n)
- {
- // Forward substitution solve LY = I
- for(int i = 0; i < n; i++) {
- out[i*n + i] = 1/L[i*n + i];
- for (int j = i+1; j < n; j++) {
- for (int k = i; k < j; k++) {
- out[j*n + i] -= L[j*n + k] * out[k*n + i];
- }
- out[j*n + i] /= L[j*n + j];
- }
- }
- }
- /*
- * calculates matrix inverse of Upper trangular matrix using backward substitution
- *
- * @param U, upper triangular matrix
- * @param out, Output inverted upper triangular matrix
- * @param n, dimension of matrix
- */
- static void mat_back_sub(float *U, float *out, uint8_t n)
- {
- // Backward Substitution solve UY = I
- for(int i = n-1; i >= 0; i--) {
- out[i*n + i] = 1/U[i*n + i];
- for (int j = i - 1; j >= 0; j--) {
- for (int k = i; k > j; k--) {
- out[j*n + i] -= U[j*n + k] * out[k*n + i];
- }
- out[j*n + i] /= U[j*n + j];
- }
- }
- }
- /*
- * Decomposes square matrix into Lower and Upper triangular matrices such that
- * A*P = L*U, where P is the pivot matrix
- * ref: http://rosettacode.org/wiki/LU_decomposition
- * @param U, upper triangular matrix
- * @param out, Output inverted upper triangular matrix
- * @param n, dimension of matrix
- */
- static void mat_LU_decompose(float* A, float* L, float* U, float *P, uint8_t n)
- {
- memset(L,0,n*n*sizeof(float));
- memset(U,0,n*n*sizeof(float));
- memset(P,0,n*n*sizeof(float));
- mat_pivot(A,P,n);
- float *APrime = mat_mul(P,A,n);
- for(uint8_t i = 0; i < n; i++) {
- L[i*n + i] = 1;
- }
- for(uint8_t i = 0; i < n; i++) {
- for(uint8_t j = 0; j < n; j++) {
- if(j <= i) {
- U[j*n + i] = APrime[j*n + i];
- for(uint8_t k = 0; k < j; k++) {
- U[j*n + i] -= L[j*n + k] * U[k*n + i];
- }
- }
- if(j >= i) {
- L[j*n + i] = APrime[j*n + i];
- for(uint8_t k = 0; k < i; k++) {
- L[j*n + i] -= L[j*n + k] * U[k*n + i];
- }
- L[j*n + i] /= U[i*n + i];
- }
- }
- }
- delete[] APrime;
- }
- /*
- * matrix inverse code for any square matrix using LU decomposition
- * inv = inv(U)*inv(L)*P, where L and U are triagular matrices and P the pivot matrix
- * ref: http://www.cl.cam.ac.uk/teaching/1314/NumMethods/supporting/mcmaster-kiruba-ludecomp.pdf
- * @param m, input 4x4 matrix
- * @param inv, Output inverted 4x4 matrix
- * @param n, dimension of square matrix
- * @returns false = matrix is Singular, true = matrix inversion successful
- */
- static bool mat_inverse(float* A, float* inv, uint8_t n)
- {
- float *L, *U, *P;
- bool ret = true;
- L = new float[n*n];
- U = new float[n*n];
- P = new float[n*n];
- mat_LU_decompose(A,L,U,P,n);
- float *L_inv = new float[n*n];
- float *U_inv = new float[n*n];
- memset(L_inv,0,n*n*sizeof(float));
- mat_forward_sub(L,L_inv,n);
- memset(U_inv,0,n*n*sizeof(float));
- mat_back_sub(U,U_inv,n);
- // decomposed matrices no longer required
- delete[] L;
- delete[] U;
- float *inv_unpivoted = mat_mul(U_inv,L_inv,n);
- float *inv_pivoted = mat_mul(inv_unpivoted, P, n);
- //check sanity of results
- for(uint8_t i = 0; i < n; i++) {
- for(uint8_t j = 0; j < n; j++) {
- if(isnan(inv_pivoted[i*n+j]) || isinf(inv_pivoted[i*n+j])){
- ret = false;
- }
- }
- }
- memcpy(inv,inv_pivoted,n*n*sizeof(float));
- //free memory
- delete[] inv_pivoted;
- delete[] inv_unpivoted;
- delete[] P;
- delete[] U_inv;
- delete[] L_inv;
- return ret;
- }
- /*
- * fast matrix inverse code only for 3x3 square matrix
- *
- * @param m, input 4x4 matrix
- * @param invOut, Output inverted 4x4 matrix
- * @returns false = matrix is Singular, true = matrix inversion successful
- */
- bool inverse3x3(float m[], float invOut[])
- {
- float inv[9];
- // computes the inverse of a matrix m
- float det = m[0] * (m[4] * m[8] - m[7] * m[5]) -
- m[1] * (m[3] * m[8] - m[5] * m[6]) +
- m[2] * (m[3] * m[7] - m[4] * m[6]);
- if (is_zero(det) || isinf(det)) {
- return false;
- }
- float invdet = 1 / det;
- inv[0] = (m[4] * m[8] - m[7] * m[5]) * invdet;
- inv[1] = (m[2] * m[7] - m[1] * m[8]) * invdet;
- inv[2] = (m[1] * m[5] - m[2] * m[4]) * invdet;
- inv[3] = (m[5] * m[6] - m[3] * m[8]) * invdet;
- inv[4] = (m[0] * m[8] - m[2] * m[6]) * invdet;
- inv[5] = (m[3] * m[2] - m[0] * m[5]) * invdet;
- inv[6] = (m[3] * m[7] - m[6] * m[4]) * invdet;
- inv[7] = (m[6] * m[1] - m[0] * m[7]) * invdet;
- inv[8] = (m[0] * m[4] - m[3] * m[1]) * invdet;
- for(uint8_t i = 0; i < 9; i++){
- invOut[i] = inv[i];
- }
- return true;
- }
- /*
- * fast matrix inverse code only for 4x4 square matrix copied from
- * gluInvertMatrix implementation in opengl for 4x4 matrices.
- *
- * @param m, input 4x4 matrix
- * @param invOut, Output inverted 4x4 matrix
- * @returns false = matrix is Singular, true = matrix inversion successful
- */
- bool inverse4x4(float m[],float invOut[])
- {
- float inv[16], det;
- uint8_t i;
- #if CONFIG_HAL_BOARD == HAL_BOARD_SITL
- int old = fedisableexcept(FE_OVERFLOW);
- if (old < 0) {
- hal.console->printf("inverse4x4(): warning: error on disabling FE_OVERFLOW floating point exception\n");
- }
- #endif
- inv[0] = m[5] * m[10] * m[15] -
- m[5] * m[11] * m[14] -
- m[9] * m[6] * m[15] +
- m[9] * m[7] * m[14] +
- m[13] * m[6] * m[11] -
- m[13] * m[7] * m[10];
- inv[4] = -m[4] * m[10] * m[15] +
- m[4] * m[11] * m[14] +
- m[8] * m[6] * m[15] -
- m[8] * m[7] * m[14] -
- m[12] * m[6] * m[11] +
- m[12] * m[7] * m[10];
- inv[8] = m[4] * m[9] * m[15] -
- m[4] * m[11] * m[13] -
- m[8] * m[5] * m[15] +
- m[8] * m[7] * m[13] +
- m[12] * m[5] * m[11] -
- m[12] * m[7] * m[9];
- inv[12] = -m[4] * m[9] * m[14] +
- m[4] * m[10] * m[13] +
- m[8] * m[5] * m[14] -
- m[8] * m[6] * m[13] -
- m[12] * m[5] * m[10] +
- m[12] * m[6] * m[9];
- inv[1] = -m[1] * m[10] * m[15] +
- m[1] * m[11] * m[14] +
- m[9] * m[2] * m[15] -
- m[9] * m[3] * m[14] -
- m[13] * m[2] * m[11] +
- m[13] * m[3] * m[10];
- inv[5] = m[0] * m[10] * m[15] -
- m[0] * m[11] * m[14] -
- m[8] * m[2] * m[15] +
- m[8] * m[3] * m[14] +
- m[12] * m[2] * m[11] -
- m[12] * m[3] * m[10];
- inv[9] = -m[0] * m[9] * m[15] +
- m[0] * m[11] * m[13] +
- m[8] * m[1] * m[15] -
- m[8] * m[3] * m[13] -
- m[12] * m[1] * m[11] +
- m[12] * m[3] * m[9];
- inv[13] = m[0] * m[9] * m[14] -
- m[0] * m[10] * m[13] -
- m[8] * m[1] * m[14] +
- m[8] * m[2] * m[13] +
- m[12] * m[1] * m[10] -
- m[12] * m[2] * m[9];
- inv[2] = m[1] * m[6] * m[15] -
- m[1] * m[7] * m[14] -
- m[5] * m[2] * m[15] +
- m[5] * m[3] * m[14] +
- m[13] * m[2] * m[7] -
- m[13] * m[3] * m[6];
- inv[6] = -m[0] * m[6] * m[15] +
- m[0] * m[7] * m[14] +
- m[4] * m[2] * m[15] -
- m[4] * m[3] * m[14] -
- m[12] * m[2] * m[7] +
- m[12] * m[3] * m[6];
- inv[10] = m[0] * m[5] * m[15] -
- m[0] * m[7] * m[13] -
- m[4] * m[1] * m[15] +
- m[4] * m[3] * m[13] +
- m[12] * m[1] * m[7] -
- m[12] * m[3] * m[5];
- inv[14] = -m[0] * m[5] * m[14] +
- m[0] * m[6] * m[13] +
- m[4] * m[1] * m[14] -
- m[4] * m[2] * m[13] -
- m[12] * m[1] * m[6] +
- m[12] * m[2] * m[5];
- inv[3] = -m[1] * m[6] * m[11] +
- m[1] * m[7] * m[10] +
- m[5] * m[2] * m[11] -
- m[5] * m[3] * m[10] -
- m[9] * m[2] * m[7] +
- m[9] * m[3] * m[6];
- inv[7] = m[0] * m[6] * m[11] -
- m[0] * m[7] * m[10] -
- m[4] * m[2] * m[11] +
- m[4] * m[3] * m[10] +
- m[8] * m[2] * m[7] -
- m[8] * m[3] * m[6];
- inv[11] = -m[0] * m[5] * m[11] +
- m[0] * m[7] * m[9] +
- m[4] * m[1] * m[11] -
- m[4] * m[3] * m[9] -
- m[8] * m[1] * m[7] +
- m[8] * m[3] * m[5];
- inv[15] = m[0] * m[5] * m[10] -
- m[0] * m[6] * m[9] -
- m[4] * m[1] * m[10] +
- m[4] * m[2] * m[9] +
- m[8] * m[1] * m[6] -
- m[8] * m[2] * m[5];
- det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
- #if CONFIG_HAL_BOARD == HAL_BOARD_SITL
- if (old >= 0 && feenableexcept(old) < 0) {
- hal.console->printf("inverse4x4(): warning: error on restoring floating exception mask\n");
- }
- #endif
- if (is_zero(det) || isinf(det)){
- return false;
- }
- det = 1.0f / det;
- for (i = 0; i < 16; i++)
- invOut[i] = inv[i] * det;
- return true;
- }
- /*
- * generic matrix inverse code
- *
- * @param x, input nxn matrix
- * @param y, Output inverted nxn matrix
- * @param n, dimension of square matrix
- * @returns false = matrix is Singular, true = matrix inversion successful
- */
- bool inverse(float x[], float y[], uint16_t dim)
- {
- switch(dim){
- case 3: return inverse3x3(x,y);
- case 4: return inverse4x4(x,y);
- default: return mat_inverse(x,y,dim);
- }
- }
|