123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 |
- #include <AP_HAL/AP_HAL.h>
- #include "AC_Loiter.h"
- extern const AP_HAL::HAL& hal;
- #define LOITER_SPEED_DEFAULT 1250.0f // default loiter speed in cm/s
- #define LOITER_SPEED_MIN 20.0f // minimum loiter speed in cm/s
- #define LOITER_ACCEL_MAX_DEFAULT 500.0f // default acceleration in loiter mode
- #define LOITER_BRAKE_ACCEL_DEFAULT 250.0f // minimum acceleration in loiter mode
- #define LOITER_BRAKE_JERK_DEFAULT 500.0f // maximum jerk in cm/s/s/s in loiter mode
- #define LOITER_BRAKE_START_DELAY_DEFAULT 1.0f // delay (in seconds) before loiter braking begins after sticks are released
- #define LOITER_VEL_CORRECTION_MAX 200.0f // max speed used to correct position errors in loiter
- #define LOITER_POS_CORRECTION_MAX 200.0f // max position error in loiter
- #define LOITER_ACTIVE_TIMEOUT_MS 200 // loiter controller is considered active if it has been called within the past 200ms (0.2 seconds)
- const AP_Param::GroupInfo AC_Loiter::var_info[] = {
- // @Param: ANG_MAX
- // @DisplayName: Loiter Angle Max
- // @Description: Loiter maximum lean angle. Set to zero for 2/3 of PSC_ANGLE_MAX or ANGLE_MAX
- // @Units: deg
- // @Range: 0 45
- // @Increment: 1
- // @User: Advanced
- AP_GROUPINFO("ANG_MAX", 1, AC_Loiter, _angle_max, 0.0f),
- // @Param: SPEED
- // @DisplayName: Loiter Horizontal Maximum Speed
- // @Description: Defines the maximum speed in cm/s which the aircraft will travel horizontally while in loiter mode
- // @Units: cm/s
- // @Range: 20 2000
- // @Increment: 50
- // @User: Standard
- AP_GROUPINFO("SPEED", 2, AC_Loiter, _speed_cms, LOITER_SPEED_DEFAULT),
- // @Param: ACC_MAX
- // @DisplayName: Loiter maximum correction acceleration
- // @Description: Loiter maximum correction acceleration in cm/s/s. Higher values cause the copter to correct position errors more aggressively.
- // @Units: cm/s/s
- // @Range: 100 981
- // @Increment: 1
- // @User: Advanced
- AP_GROUPINFO("ACC_MAX", 3, AC_Loiter, _accel_cmss, LOITER_ACCEL_MAX_DEFAULT),
- // @Param: BRK_ACCEL
- // @DisplayName: Loiter braking acceleration
- // @Description: Loiter braking acceleration in cm/s/s. Higher values stop the copter more quickly when the stick is centered.
- // @Units: cm/s/s
- // @Range: 25 250
- // @Increment: 1
- // @User: Advanced
- AP_GROUPINFO("BRK_ACCEL", 4, AC_Loiter, _brake_accel_cmss, LOITER_BRAKE_ACCEL_DEFAULT),
- // @Param: BRK_JERK
- // @DisplayName: Loiter braking jerk
- // @Description: Loiter braking jerk in cm/s/s/s. Higher values will remove braking faster if the pilot moves the sticks during a braking maneuver.
- // @Units: cm/s/s/s
- // @Range: 500 5000
- // @Increment: 1
- // @User: Advanced
- AP_GROUPINFO("BRK_JERK", 5, AC_Loiter, _brake_jerk_max_cmsss, LOITER_BRAKE_JERK_DEFAULT),
- // @Param: BRK_DELAY
- // @DisplayName: Loiter brake start delay (in seconds)
- // @Description: Loiter brake start delay (in seconds)
- // @Units: s
- // @Range: 0 2
- // @Increment: 0.1
- // @User: Advanced
- AP_GROUPINFO("BRK_DELAY", 6, AC_Loiter, _brake_delay, LOITER_BRAKE_START_DELAY_DEFAULT),
- AP_GROUPEND
- };
- // Default constructor.
- // Note that the Vector/Matrix constructors already implicitly zero
- // their values.
- //
- AC_Loiter::AC_Loiter(const AP_InertialNav& inav, const AP_AHRS_View& ahrs, AC_PosControl& pos_control, const AC_AttitudeControl& attitude_control) :
- _inav(inav),
- _ahrs(ahrs),
- _pos_control(pos_control),
- _attitude_control(attitude_control)
- {
- AP_Param::setup_object_defaults(this, var_info);
- }
- /// init_target to a position in cm from ekf origin
- void AC_Loiter::init_target(const Vector3f& position)
- {
- sanity_check_params();
- // initialise pos controller speed, acceleration
- _pos_control.set_max_speed_xy(LOITER_VEL_CORRECTION_MAX);
- _pos_control.set_max_accel_xy(_accel_cmss);
- // initialise desired acceleration and angles to zero to remain on station
- _predicted_accel.zero();
- _desired_accel = _predicted_accel;
- _predicted_euler_angle.zero();
- // set target position
- _pos_control.set_xy_target(position.x, position.y);
- // set vehicle velocity and acceleration to zero
- _pos_control.set_desired_velocity_xy(0.0f,0.0f);
- _pos_control.set_desired_accel_xy(0.0f,0.0f);
- // initialise position controller if not already active
- if (!_pos_control.is_active_xy()) {
- _pos_control.init_xy_controller();
- }
- }
- /// initialize's position and feed-forward velocity from current pos and velocity
- void AC_Loiter::init_target()
- {
- const Vector3f& curr_pos = _inav.get_position();
- const Vector3f& curr_vel = _inav.get_velocity();
- sanity_check_params();
- // initialise pos controller speed and acceleration
- _pos_control.set_max_speed_xy(LOITER_VEL_CORRECTION_MAX);
- _pos_control.set_max_accel_xy(_accel_cmss);
- _pos_control.set_leash_length_xy(LOITER_POS_CORRECTION_MAX);
- _predicted_accel = _desired_accel;
- // update angle targets that will be passed to stabilize controller
- float roll_cd, pitch_cd;
- _pos_control.accel_to_lean_angles(_predicted_accel.x, _predicted_accel.y, roll_cd, pitch_cd);
- _predicted_euler_angle.x = radians(roll_cd*0.01f);
- _predicted_euler_angle.y = radians(pitch_cd*0.01f);
- // set target position
- _pos_control.set_xy_target(curr_pos.x, curr_pos.y);
- // set vehicle velocity and acceleration to current state
- _pos_control.set_desired_velocity_xy(curr_vel.x, curr_vel.y);
- _pos_control.set_desired_accel_xy(_desired_accel.x, _desired_accel.y);
- // initialise position controller
- _pos_control.init_xy_controller();
- }
- /// reduce response for landing
- void AC_Loiter::soften_for_landing()
- {
- const Vector3f& curr_pos = _inav.get_position();
- // set target position to current position
- _pos_control.set_xy_target(curr_pos.x, curr_pos.y);
- // also prevent I term build up in xy velocity controller. Note
- // that this flag is reset on each loop, in run_xy_controller()
- _pos_control.set_limit_accel_xy();
- }
- /// set pilot desired acceleration in centi-degrees
- // dt should be the time (in seconds) since the last call to this function
- void AC_Loiter::set_pilot_desired_acceleration(float euler_roll_angle_cd, float euler_pitch_angle_cd, float dt)
- {
- // Convert from centidegrees on public interface to radians
- const float euler_roll_angle = radians(euler_roll_angle_cd*0.01f);
- const float euler_pitch_angle = radians(euler_pitch_angle_cd*0.01f);
- // convert our desired attitude to an acceleration vector assuming we are hovering
- const float pilot_cos_pitch_target = constrain_float(cosf(euler_pitch_angle), 0.5f, 1.0f);
- const float pilot_accel_rgt_cms = GRAVITY_MSS*100.0f * tanf(euler_roll_angle)/pilot_cos_pitch_target;
- const float pilot_accel_fwd_cms = -GRAVITY_MSS*100.0f * tanf(euler_pitch_angle);
- // rotate acceleration vectors input to lat/lon frame
- _desired_accel.x = (pilot_accel_fwd_cms*_ahrs.cos_yaw() - pilot_accel_rgt_cms*_ahrs.sin_yaw());
- _desired_accel.y = (pilot_accel_fwd_cms*_ahrs.sin_yaw() + pilot_accel_rgt_cms*_ahrs.cos_yaw());
- // difference between where we think we should be and where we want to be
- Vector2f angle_error(wrap_PI(euler_roll_angle - _predicted_euler_angle.x), wrap_PI(euler_pitch_angle - _predicted_euler_angle.y));
- // calculate the angular velocity that we would expect given our desired and predicted attitude
- _attitude_control.input_shaping_rate_predictor(angle_error, _predicted_euler_rate, dt);
- // update our predicted attitude based on our predicted angular velocity
- _predicted_euler_angle += _predicted_euler_rate * dt;
- // convert our predicted attitude to an acceleration vector assuming we are hovering
- const float pilot_predicted_cos_pitch_target = cosf(_predicted_euler_angle.y);
- const float pilot_predicted_accel_rgt_cms = GRAVITY_MSS*100.0f * tanf(_predicted_euler_angle.x)/pilot_predicted_cos_pitch_target;
- const float pilot_predicted_accel_fwd_cms = -GRAVITY_MSS*100.0f * tanf(_predicted_euler_angle.y);
- // rotate acceleration vectors input to lat/lon frame
- _predicted_accel.x = (pilot_predicted_accel_fwd_cms*_ahrs.cos_yaw() - pilot_predicted_accel_rgt_cms*_ahrs.sin_yaw());
- _predicted_accel.y = (pilot_predicted_accel_fwd_cms*_ahrs.sin_yaw() + pilot_predicted_accel_rgt_cms*_ahrs.cos_yaw());
- }
- /// get vector to stopping point based on a horizontal position and velocity
- void AC_Loiter::get_stopping_point_xy(Vector3f& stopping_point) const
- {
- _pos_control.get_stopping_point_xy(stopping_point);
- }
- /// get maximum lean angle when using loiter
- float AC_Loiter::get_angle_max_cd() const
- {
- if (is_zero(_angle_max)) {
- return MIN(_attitude_control.lean_angle_max(), _pos_control.get_lean_angle_max_cd()) * (2.0f/3.0f);
- }
- return MIN(_angle_max*100.0f, _pos_control.get_lean_angle_max_cd());
- }
- /// run the loiter controller
- void AC_Loiter::update()
- {
- // calculate dt
- float dt = _pos_control.time_since_last_xy_update();
- if (dt >= 0.2f) {
- dt = 0.0f;
- }
- // initialise pos controller speed and acceleration
- _pos_control.set_max_speed_xy(_speed_cms);
- _pos_control.set_max_accel_xy(_accel_cmss);
- calc_desired_velocity(dt);
- _pos_control.update_xy_controller();
- }
- // sanity check parameters
- void AC_Loiter::sanity_check_params()
- {
- _speed_cms = MAX(_speed_cms, LOITER_SPEED_MIN);
- _accel_cmss = MIN(_accel_cmss, GRAVITY_MSS * 100.0f * tanf(ToRad(_attitude_control.lean_angle_max() * 0.01f)));
- }
- /// calc_desired_velocity - updates desired velocity (i.e. feed forward) with pilot requested acceleration and fake wind resistance
- /// updated velocity sent directly to position controller
- void AC_Loiter::calc_desired_velocity(float nav_dt)
- {
- float ekfGndSpdLimit, ekfNavVelGainScaler;
- AP::ahrs_navekf().getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
- // calculate a loiter speed limit which is the minimum of the value set by the LOITER_SPEED
- // parameter and the value set by the EKF to observe optical flow limits
- float gnd_speed_limit_cms = MIN(_speed_cms, ekfGndSpdLimit*100.0f);
- gnd_speed_limit_cms = MAX(gnd_speed_limit_cms, LOITER_SPEED_MIN);
- float pilot_acceleration_max = GRAVITY_MSS*100.0f * tanf(radians(get_angle_max_cd()*0.01f));
- // range check nav_dt
- if (nav_dt < 0) {
- return;
- }
- _pos_control.set_max_speed_xy(gnd_speed_limit_cms);
- _pos_control.set_max_accel_xy(_accel_cmss);
- _pos_control.set_leash_length_xy(LOITER_POS_CORRECTION_MAX);
- // get loiters desired velocity from the position controller where it is being stored.
- const Vector3f &desired_vel_3d = _pos_control.get_desired_velocity();
- Vector2f desired_vel(desired_vel_3d.x,desired_vel_3d.y);
- // update the desired velocity using our predicted acceleration
- desired_vel.x += _predicted_accel.x * nav_dt;
- desired_vel.y += _predicted_accel.y * nav_dt;
- Vector2f loiter_accel_brake;
- float desired_speed = desired_vel.length();
- if (!is_zero(desired_speed)) {
- Vector2f desired_vel_norm = desired_vel/desired_speed;
- // TODO: consider using a velocity squared relationship like
- // pilot_acceleration_max*(desired_speed/gnd_speed_limit_cms)^2;
- // the drag characteristic of a multirotor should be examined to generate a curve
- // we could add a expo function here to fine tune it
- // calculate a drag acceleration based on the desired speed.
- float drag_decel = pilot_acceleration_max*desired_speed/gnd_speed_limit_cms;
- // calculate a braking acceleration if sticks are at zero
- float loiter_brake_accel = 0.0f;
- if (_desired_accel.is_zero()) {
- if ((AP_HAL::millis()-_brake_timer) > _brake_delay * 1000.0f) {
- float brake_gain = _pos_control.get_vel_xy_pid().kP() * 0.5f;
- loiter_brake_accel = constrain_float(AC_AttitudeControl::sqrt_controller(desired_speed, brake_gain, _brake_jerk_max_cmsss, nav_dt), 0.0f, _brake_accel_cmss);
- }
- } else {
- loiter_brake_accel = 0.0f;
- _brake_timer = AP_HAL::millis();
- }
- _brake_accel += constrain_float(loiter_brake_accel-_brake_accel, -_brake_jerk_max_cmsss*nav_dt, _brake_jerk_max_cmsss*nav_dt);
- loiter_accel_brake = desired_vel_norm*_brake_accel;
- // update the desired velocity using the drag and braking accelerations
- desired_speed = MAX(desired_speed-(drag_decel+_brake_accel)*nav_dt,0.0f);
- desired_vel = desired_vel_norm*desired_speed;
- }
- // add braking to the desired acceleration
- _desired_accel -= loiter_accel_brake;
- // Apply EKF limit to desired velocity - this limit is calculated by the EKF and adjusted as required to ensure certain sensor limits are respected (eg optical flow sensing)
- float horizSpdDem = desired_vel.length();
- if (horizSpdDem > gnd_speed_limit_cms) {
- desired_vel.x = desired_vel.x * gnd_speed_limit_cms / horizSpdDem;
- desired_vel.y = desired_vel.y * gnd_speed_limit_cms / horizSpdDem;
- }
- // Limit the velocity to prevent fence violations
- // TODO: We need to also limit the _desired_accel
- AC_Avoid *_avoid = AP::ac_avoid();
- if (_avoid != nullptr) {
- _avoid->adjust_velocity(_pos_control.get_pos_xy_p().kP(), _accel_cmss, desired_vel, nav_dt);
- }
- // send adjusted feed forward acceleration and velocity back to the Position Controller
- _pos_control.set_desired_accel_xy(_desired_accel.x, _desired_accel.y);
- _pos_control.set_desired_velocity_xy(desired_vel.x, desired_vel.y);
- }
|