123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450 |
- #include <AP_HAL/AP_HAL.h>
- #include <AP_Scheduler/AP_Scheduler.h>
- #include <AP_AHRS/AP_AHRS.h>
- #include "AC_PrecLand.h"
- #include "AC_PrecLand_Backend.h"
- #include "AC_PrecLand_Companion.h"
- #include "AC_PrecLand_IRLock.h"
- #include "AC_PrecLand_SITL_Gazebo.h"
- #include "AC_PrecLand_SITL.h"
- #include <AP_AHRS/AP_AHRS.h>
- extern const AP_HAL::HAL& hal;
- const AP_Param::GroupInfo AC_PrecLand::var_info[] = {
- // @Param: ENABLED
- // @DisplayName: Precision Land enabled/disabled and behaviour
- // @Description: Precision Land enabled/disabled and behaviour
- // @Values: 0:Disabled, 1:Enabled
- // @User: Advanced
- AP_GROUPINFO_FLAGS("ENABLED", 0, AC_PrecLand, _enabled, 0, AP_PARAM_FLAG_ENABLE),
- // @Param: TYPE
- // @DisplayName: Precision Land Type
- // @Description: Precision Land Type
- // @Values: 0:None, 1:CompanionComputer, 2:IRLock, 3:SITL_Gazebo, 4:SITL
- // @User: Advanced
- AP_GROUPINFO("TYPE", 1, AC_PrecLand, _type, 0),
- // @Param: YAW_ALIGN
- // @DisplayName: Sensor yaw alignment
- // @Description: Yaw angle from body x-axis to sensor x-axis.
- // @Range: 0 360
- // @Increment: 1
- // @User: Advanced
- // @Units: cdeg
- AP_GROUPINFO("YAW_ALIGN", 2, AC_PrecLand, _yaw_align, 0),
- // @Param: LAND_OFS_X
- // @DisplayName: Land offset forward
- // @Description: Desired landing position of the camera forward of the target in vehicle body frame
- // @Range: -20 20
- // @Increment: 1
- // @User: Advanced
- // @Units: cm
- AP_GROUPINFO("LAND_OFS_X", 3, AC_PrecLand, _land_ofs_cm_x, 0),
- // @Param: LAND_OFS_Y
- // @DisplayName: Land offset right
- // @Description: desired landing position of the camera right of the target in vehicle body frame
- // @Range: -20 20
- // @Increment: 1
- // @User: Advanced
- // @Units: cm
- AP_GROUPINFO("LAND_OFS_Y", 4, AC_PrecLand, _land_ofs_cm_y, 0),
- // @Param: EST_TYPE
- // @DisplayName: Precision Land Estimator Type
- // @Description: Specifies the estimation method to be used
- // @Values: 0:RawSensor, 1:KalmanFilter
- // @User: Advanced
- AP_GROUPINFO("EST_TYPE", 5, AC_PrecLand, _estimator_type, 1),
- // @Param: ACC_P_NSE
- // @DisplayName: Kalman Filter Accelerometer Noise
- // @Description: Kalman Filter Accelerometer Noise, higher values weight the input from the camera more, accels less
- // @Range: 0.5 5
- // @User: Advanceds
- AP_GROUPINFO("ACC_P_NSE", 6, AC_PrecLand, _accel_noise, 2.5f),
- // @Param: CAM_POS_X
- // @DisplayName: Camera X position offset
- // @Description: X position of the camera in body frame. Positive X is forward of the origin.
- // @Units: m
- // @User: Advanced
- // @Param: CAM_POS_Y
- // @DisplayName: Camera Y position offset
- // @Description: Y position of the camera in body frame. Positive Y is to the right of the origin.
- // @Units: m
- // @User: Advanced
- // @Param: CAM_POS_Z
- // @DisplayName: Camera Z position offset
- // @Description: Z position of the camera in body frame. Positive Z is down from the origin.
- // @Units: m
- // @User: Advanced
- AP_GROUPINFO("CAM_POS", 7, AC_PrecLand, _cam_offset, 0.0f),
- // @Param: BUS
- // @DisplayName: Sensor Bus
- // @Description: Precland sensor bus for I2C sensors.
- // @Values: -1:DefaultBus,0:InternalI2C,1:ExternalI2C
- // @User: Advanced
- AP_GROUPINFO("BUS", 8, AC_PrecLand, _bus, -1),
- // @Param: LAG
- // @DisplayName: Precision Landing sensor lag
- // @Description: Precision Landing sensor lag, to cope with variable landing_target latency
- // @Range: 0.02 0.250
- // @Increment: 1
- // @Units: s
- // @User: Advanced
- // @RebootRequired: True
- AP_GROUPINFO("LAG", 9, AC_PrecLand, _lag, 0.02f), // 20ms is the old default buffer size (8 frames @ 400hz/2.5ms)
- AP_GROUPEND
- };
- // Default constructor.
- // Note that the Vector/Matrix constructors already implicitly zero
- // their values.
- //
- AC_PrecLand::AC_PrecLand()
- {
- // set parameters to defaults
- AP_Param::setup_object_defaults(this, var_info);
- }
- // perform any required initialisation of landing controllers
- // update_rate_hz should be the rate at which the update method will be called in hz
- void AC_PrecLand::init(uint16_t update_rate_hz)
- {
- // exit immediately if init has already been run
- if (_backend != nullptr) {
- return;
- }
- // default health to false
- _backend = nullptr;
- _backend_state.healthy = false;
- // create inertial history buffer
- // constrain lag parameter to be within bounds
- _lag = constrain_float(_lag, 0.02f, 0.25f);
- // calculate inertial buffer size from lag and minimum of main loop rate and update_rate_hz argument
- const uint16_t inertial_buffer_size = MAX((uint16_t)roundf(_lag * MIN(update_rate_hz, AP::scheduler().get_loop_rate_hz())), 1);
- // instantiate ring buffer to hold inertial history, return on failure so no backends are created
- _inertial_history = new ObjectArray<inertial_data_frame_s>(inertial_buffer_size);
- if (_inertial_history == nullptr) {
- return;
- }
- // instantiate backend based on type parameter
- switch ((enum PrecLandType)(_type.get())) {
- // no type defined
- case PRECLAND_TYPE_NONE:
- default:
- return;
- // companion computer
- case PRECLAND_TYPE_COMPANION:
- _backend = new AC_PrecLand_Companion(*this, _backend_state);
- break;
- // IR Lock
- case PRECLAND_TYPE_IRLOCK:
- _backend = new AC_PrecLand_IRLock(*this, _backend_state);
- break;
- #if CONFIG_HAL_BOARD == HAL_BOARD_SITL
- case PRECLAND_TYPE_SITL_GAZEBO:
- _backend = new AC_PrecLand_SITL_Gazebo(*this, _backend_state);
- break;
- case PRECLAND_TYPE_SITL:
- _backend = new AC_PrecLand_SITL(*this, _backend_state);
- break;
- #endif
- }
- // init backend
- if (_backend != nullptr) {
- _backend->init();
- }
- }
- // update - give chance to driver to get updates from sensor
- void AC_PrecLand::update(float rangefinder_alt_cm, bool rangefinder_alt_valid)
- {
- // exit immediately if not enabled
- if (_backend == nullptr || _inertial_history == nullptr) {
- return;
- }
- // append current velocity and attitude correction into history buffer
- struct inertial_data_frame_s inertial_data_newest;
- const AP_AHRS_NavEKF &_ahrs = AP::ahrs_navekf();
- _ahrs.getCorrectedDeltaVelocityNED(inertial_data_newest.correctedVehicleDeltaVelocityNED, inertial_data_newest.dt);
- inertial_data_newest.Tbn = _ahrs.get_rotation_body_to_ned();
- Vector3f curr_vel;
- nav_filter_status status;
- if (!_ahrs.get_velocity_NED(curr_vel) || !_ahrs.get_filter_status(status)) {
- inertial_data_newest.inertialNavVelocityValid = false;
- } else {
- inertial_data_newest.inertialNavVelocityValid = status.flags.horiz_vel;
- }
- curr_vel.z = -curr_vel.z; // NED to NEU
- inertial_data_newest.inertialNavVelocity = curr_vel;
- inertial_data_newest.time_usec = AP_HAL::micros64();
- _inertial_history->push_force(inertial_data_newest);
- // update estimator of target position
- if (_backend != nullptr && _enabled) {
- _backend->update();
- run_estimator(rangefinder_alt_cm*0.01f, rangefinder_alt_valid);
- }
- }
- bool AC_PrecLand::target_acquired()
- {
- _target_acquired = _target_acquired && (AP_HAL::millis()-_last_update_ms) < 2000;
- return _target_acquired;
- }
- bool AC_PrecLand::get_target_position_cm(Vector2f& ret)
- {
- if (!target_acquired()) {
- return false;
- }
- Vector2f curr_pos;
- if (!AP::ahrs().get_relative_position_NE_origin(curr_pos)) {
- return false;
- }
- ret.x = (_target_pos_rel_out_NE.x + curr_pos.x) * 100.0f; // m to cm
- ret.y = (_target_pos_rel_out_NE.y + curr_pos.y) * 100.0f; // m to cm
- return true;
- }
- void AC_PrecLand::get_target_position_measurement_cm(Vector3f& ret)
- {
- ret = _target_pos_rel_meas_NED*100.0f;
- return;
- }
- bool AC_PrecLand::get_target_position_relative_cm(Vector2f& ret)
- {
- if (!target_acquired()) {
- return false;
- }
- ret = _target_pos_rel_out_NE*100.0f;
- return true;
- }
- bool AC_PrecLand::get_target_velocity_relative_cms(Vector2f& ret)
- {
- if (!target_acquired()) {
- return false;
- }
- ret = _target_vel_rel_out_NE*100.0f;
- return true;
- }
- // handle_msg - Process a LANDING_TARGET mavlink message
- void AC_PrecLand::handle_msg(const mavlink_message_t &msg)
- {
- // run backend update
- if (_backend != nullptr) {
- _backend->handle_msg(msg);
- }
- }
- //
- // Private methods
- //
- void AC_PrecLand::run_estimator(float rangefinder_alt_m, bool rangefinder_alt_valid)
- {
- const struct inertial_data_frame_s *inertial_data_delayed = (*_inertial_history)[0];
- switch (_estimator_type) {
- case ESTIMATOR_TYPE_RAW_SENSOR: {
- // Return if there's any invalid velocity data
- for (uint8_t i=0; i<_inertial_history->available(); i++) {
- const struct inertial_data_frame_s *inertial_data = (*_inertial_history)[i];
- if (!inertial_data->inertialNavVelocityValid) {
- _target_acquired = false;
- return;
- }
- }
- // Predict
- if (target_acquired()) {
- _target_pos_rel_est_NE.x -= inertial_data_delayed->inertialNavVelocity.x * inertial_data_delayed->dt;
- _target_pos_rel_est_NE.y -= inertial_data_delayed->inertialNavVelocity.y * inertial_data_delayed->dt;
- _target_vel_rel_est_NE.x = -inertial_data_delayed->inertialNavVelocity.x;
- _target_vel_rel_est_NE.y = -inertial_data_delayed->inertialNavVelocity.y;
- }
- // Update if a new Line-Of-Sight measurement is available
- if (construct_pos_meas_using_rangefinder(rangefinder_alt_m, rangefinder_alt_valid)) {
- _target_pos_rel_est_NE.x = _target_pos_rel_meas_NED.x;
- _target_pos_rel_est_NE.y = _target_pos_rel_meas_NED.y;
- _target_vel_rel_est_NE.x = -inertial_data_delayed->inertialNavVelocity.x;
- _target_vel_rel_est_NE.y = -inertial_data_delayed->inertialNavVelocity.y;
- _last_update_ms = AP_HAL::millis();
- _target_acquired = true;
- }
- // Output prediction
- if (target_acquired()) {
- run_output_prediction();
- }
- break;
- }
- case ESTIMATOR_TYPE_KALMAN_FILTER: {
- // Predict
- if (target_acquired()) {
- const float& dt = inertial_data_delayed->dt;
- const Vector3f& vehicleDelVel = inertial_data_delayed->correctedVehicleDeltaVelocityNED;
- _ekf_x.predict(dt, -vehicleDelVel.x, _accel_noise*dt);
- _ekf_y.predict(dt, -vehicleDelVel.y, _accel_noise*dt);
- }
- // Update if a new Line-Of-Sight measurement is available
- if (construct_pos_meas_using_rangefinder(rangefinder_alt_m, rangefinder_alt_valid)) {
- float xy_pos_var = sq(_target_pos_rel_meas_NED.z*(0.01f + 0.01f*AP::ahrs().get_gyro().length()) + 0.02f);
- if (!target_acquired()) {
- // reset filter state
- if (inertial_data_delayed->inertialNavVelocityValid) {
- _ekf_x.init(_target_pos_rel_meas_NED.x, xy_pos_var, -inertial_data_delayed->inertialNavVelocity.x, sq(2.0f));
- _ekf_y.init(_target_pos_rel_meas_NED.y, xy_pos_var, -inertial_data_delayed->inertialNavVelocity.y, sq(2.0f));
- } else {
- _ekf_x.init(_target_pos_rel_meas_NED.x, xy_pos_var, 0.0f, sq(10.0f));
- _ekf_y.init(_target_pos_rel_meas_NED.y, xy_pos_var, 0.0f, sq(10.0f));
- }
- _last_update_ms = AP_HAL::millis();
- _target_acquired = true;
- } else {
- float NIS_x = _ekf_x.getPosNIS(_target_pos_rel_meas_NED.x, xy_pos_var);
- float NIS_y = _ekf_y.getPosNIS(_target_pos_rel_meas_NED.y, xy_pos_var);
- if (MAX(NIS_x, NIS_y) < 3.0f || _outlier_reject_count >= 3) {
- _outlier_reject_count = 0;
- _ekf_x.fusePos(_target_pos_rel_meas_NED.x, xy_pos_var);
- _ekf_y.fusePos(_target_pos_rel_meas_NED.y, xy_pos_var);
- _last_update_ms = AP_HAL::millis();
- _target_acquired = true;
- } else {
- _outlier_reject_count++;
- }
- }
- }
- // Output prediction
- if (target_acquired()) {
- _target_pos_rel_est_NE.x = _ekf_x.getPos();
- _target_pos_rel_est_NE.y = _ekf_y.getPos();
- _target_vel_rel_est_NE.x = _ekf_x.getVel();
- _target_vel_rel_est_NE.y = _ekf_y.getVel();
- run_output_prediction();
- }
- break;
- }
- }
- }
- bool AC_PrecLand::retrieve_los_meas(Vector3f& target_vec_unit_body)
- {
- if (_backend->have_los_meas() && _backend->los_meas_time_ms() != _last_backend_los_meas_ms) {
- _last_backend_los_meas_ms = _backend->los_meas_time_ms();
- _backend->get_los_body(target_vec_unit_body);
- // Apply sensor yaw alignment rotation
- float sin_yaw_align = sinf(radians(_yaw_align*0.01f));
- float cos_yaw_align = cosf(radians(_yaw_align*0.01f));
- Matrix3f Rz = Matrix3f(
- cos_yaw_align, -sin_yaw_align, 0,
- sin_yaw_align, cos_yaw_align, 0,
- 0, 0, 1
- );
- target_vec_unit_body = Rz*target_vec_unit_body;
- return true;
- } else {
- return false;
- }
- }
- bool AC_PrecLand::construct_pos_meas_using_rangefinder(float rangefinder_alt_m, bool rangefinder_alt_valid)
- {
- Vector3f target_vec_unit_body;
- if (retrieve_los_meas(target_vec_unit_body)) {
- const struct inertial_data_frame_s *inertial_data_delayed = (*_inertial_history)[0];
- Vector3f target_vec_unit_ned = inertial_data_delayed->Tbn * target_vec_unit_body;
- bool target_vec_valid = target_vec_unit_ned.z > 0.0f;
- bool alt_valid = (rangefinder_alt_valid && rangefinder_alt_m > 0.0f) || (_backend->distance_to_target() > 0.0f);
- if (target_vec_valid && alt_valid) {
- float dist, alt;
- if (_backend->distance_to_target() > 0.0f) {
- dist = _backend->distance_to_target();
- alt = dist * target_vec_unit_ned.z;
- } else {
- alt = MAX(rangefinder_alt_m, 0.0f);
- dist = alt / target_vec_unit_ned.z;
- }
- // Compute camera position relative to IMU
- Vector3f accel_body_offset = AP::ins().get_imu_pos_offset(AP::ahrs().get_primary_accel_index());
- Vector3f cam_pos_ned = inertial_data_delayed->Tbn * (_cam_offset.get() - accel_body_offset);
- // Compute target position relative to IMU
- _target_pos_rel_meas_NED = Vector3f(target_vec_unit_ned.x*dist, target_vec_unit_ned.y*dist, alt) + cam_pos_ned;
- return true;
- }
- }
- return false;
- }
- void AC_PrecLand::run_output_prediction()
- {
- _target_pos_rel_out_NE = _target_pos_rel_est_NE;
- _target_vel_rel_out_NE = _target_vel_rel_est_NE;
- // Predict forward from delayed time horizon
- for (uint8_t i=1; i<_inertial_history->available(); i++) {
- const struct inertial_data_frame_s *inertial_data = (*_inertial_history)[i];
- _target_vel_rel_out_NE.x -= inertial_data->correctedVehicleDeltaVelocityNED.x;
- _target_vel_rel_out_NE.y -= inertial_data->correctedVehicleDeltaVelocityNED.y;
- _target_pos_rel_out_NE.x += _target_vel_rel_out_NE.x * inertial_data->dt;
- _target_pos_rel_out_NE.y += _target_vel_rel_out_NE.y * inertial_data->dt;
- }
- const AP_AHRS &_ahrs = AP::ahrs();
- const Matrix3f& Tbn = (*_inertial_history)[_inertial_history->available()-1]->Tbn;
- Vector3f accel_body_offset = AP::ins().get_imu_pos_offset(_ahrs.get_primary_accel_index());
- // Apply position correction for CG offset from IMU
- Vector3f imu_pos_ned = Tbn * accel_body_offset;
- _target_pos_rel_out_NE.x += imu_pos_ned.x;
- _target_pos_rel_out_NE.y += imu_pos_ned.y;
- // Apply position correction for body-frame horizontal camera offset from CG, so that vehicle lands lens-to-target
- Vector3f cam_pos_horizontal_ned = Tbn * Vector3f(_cam_offset.get().x, _cam_offset.get().y, 0);
- _target_pos_rel_out_NE.x -= cam_pos_horizontal_ned.x;
- _target_pos_rel_out_NE.y -= cam_pos_horizontal_ned.y;
- // Apply velocity correction for IMU offset from CG
- Vector3f vel_ned_rel_imu = Tbn * (_ahrs.get_gyro() % (-accel_body_offset));
- _target_vel_rel_out_NE.x -= vel_ned_rel_imu.x;
- _target_vel_rel_out_NE.y -= vel_ned_rel_imu.y;
- // Apply land offset
- Vector3f land_ofs_ned_m = _ahrs.get_rotation_body_to_ned() * Vector3f(_land_ofs_cm_x,_land_ofs_cm_y,0) * 0.01f;
- _target_pos_rel_out_NE.x += land_ofs_ned_m.x;
- _target_pos_rel_out_NE.y += land_ofs_ned_m.y;
- }
|