123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- /// @file AC_PID.cpp
- /// @brief Generic PID algorithm
- #include <AP_Math/AP_Math.h>
- #include "AC_PID.h"
- const AP_Param::GroupInfo AC_PID::var_info[] = {
- // @Param: P
- // @DisplayName: PID Proportional Gain
- // @Description: P Gain which produces an output value that is proportional to the current error value
- AP_GROUPINFO("P", 0, AC_PID, _kp, 0),
- // @Param: I
- // @DisplayName: PID Integral Gain
- // @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
- AP_GROUPINFO("I", 1, AC_PID, _ki, 0),
- // @Param: D
- // @DisplayName: PID Derivative Gain
- // @Description: D Gain which produces an output that is proportional to the rate of change of the error
- AP_GROUPINFO("D", 2, AC_PID, _kd, 0),
- // 3 was for uint16 IMAX
- // @Param: FF
- // @DisplayName: FF FeedForward Gain
- // @Description: FF Gain which produces an output value that is proportional to the demanded input
- AP_GROUPINFO("FF", 4, AC_PID, _kff, 0),
- // @Param: IMAX
- // @DisplayName: PID Integral Maximum
- // @Description: The maximum/minimum value that the I term can output
- AP_GROUPINFO("IMAX", 5, AC_PID, _kimax, 0),
- // 6 was for float FILT
- // 7 is for float ILMI and FF
- // index 8 was for AFF
- // @Param: FLTT
- // @DisplayName: PID Target filter frequency in Hz
- // @Description: Target filter frequency in Hz
- // @Units: Hz
- AP_GROUPINFO("FLTT", 9, AC_PID, _filt_T_hz, AC_PID_TFILT_HZ_DEFAULT),
- // @Param: FLTE
- // @DisplayName: PID Error filter frequency in Hz
- // @Description: Error filter frequency in Hz
- // @Units: Hz
- AP_GROUPINFO("FLTE", 10, AC_PID, _filt_E_hz, AC_PID_EFILT_HZ_DEFAULT),
- // @Param: FLTD
- // @DisplayName: PID Derivative term filter frequency in Hz
- // @Description: Derivative filter frequency in Hz
- // @Units: Hz
- AP_GROUPINFO("FLTD", 11, AC_PID, _filt_D_hz, AC_PID_DFILT_HZ_DEFAULT),
- AP_GROUPEND
- };
- // Constructor
- AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz, float dt) :
- _dt(dt),
- _integrator(0.0f),
- _error(0.0f),
- _derivative(0.0f)
- {
- // load parameter values from eeprom
- AP_Param::setup_object_defaults(this, var_info);
- _kp = initial_p;
- _ki = initial_i;
- _kd = initial_d;
- _kff = initial_ff;
- _kimax = fabsf(initial_imax);
- filt_T_hz(initial_filt_T_hz);
- filt_E_hz(initial_filt_E_hz);
- filt_D_hz(initial_filt_D_hz);
- // reset input filter to first value received
- _flags._reset_filter = true;
- memset(&_pid_info, 0, sizeof(_pid_info));
- }
- // set_dt - set time step in seconds
- void AC_PID::set_dt(float dt)
- {
- // set dt and calculate the input filter alpha
- _dt = dt;
- }
- // filt_T_hz - set target filter hz
- void AC_PID::filt_T_hz(float hz)
- {
- _filt_T_hz.set(fabsf(hz));
- }
- // filt_E_hz - set error filter hz
- void AC_PID::filt_E_hz(float hz)
- {
- _filt_E_hz.set(fabsf(hz));
- }
- // filt_D_hz - set derivative filter hz
- void AC_PID::filt_D_hz(float hz)
- {
- _filt_D_hz.set(fabsf(hz));
- }
- // update_all - set target and measured inputs to PID controller and calculate outputs
- // target and error are filtered
- // the derivative is then calculated and filtered
- // the integral is then updated based on the setting of the limit flag
- float AC_PID::update_all(float target, float measurement, bool limit)
- {
- // don't process inf or NaN
- if (!isfinite(target) || !isfinite(measurement)) {
- return 0.0f;
- }
- // reset input filter to value received
- if (_flags._reset_filter) {
- _flags._reset_filter = false;
- _target = target;
- _error = _target - measurement;
- _derivative = 0.0f;
- } else {
- float error_last = _error;
- _target += get_filt_T_alpha() * (target - _target);
- _error += get_filt_E_alpha() * ((_target - measurement) - _error);
- // calculate and filter derivative
- if (_dt > 0.0f) {
- float derivative = (_error - error_last) / _dt;
- _derivative += get_filt_D_alpha() * (derivative - _derivative);
- }
- }
- // update I term
- update_i(limit);
- float P_out = (_error * _kp);
- float D_out = (_derivative * _kd);
- _pid_info.target = _target;
- _pid_info.actual = measurement;
- _pid_info.error = _error;
- _pid_info.P = P_out;
- _pid_info.D = D_out;
- return P_out + _integrator + D_out;
- }
- // update_error - set error input to PID controller and calculate outputs
- // target is set to zero and error is set and filtered
- // the derivative then is calculated and filtered
- // the integral is then updated based on the setting of the limit flag
- // Target and Measured must be set manually for logging purposes.
- // todo: remove function when it is no longer used.
- float AC_PID::update_error(float error, bool limit)
- {
- // don't process inf or NaN
- if (!isfinite(error)) {
- return 0.0f;
- }
- _target = 0.0f;
- // reset input filter to value received
- if (_flags._reset_filter) {
- _flags._reset_filter = false;
- _error = error;
- _derivative = 0.0f;
- } else {
- float error_last = _error;
- _error += get_filt_E_alpha() * (error - _error);
- // calculate and filter derivative
- if (_dt > 0.0f) {
- float derivative = (_error - error_last) / _dt;
- _derivative += get_filt_D_alpha() * (derivative - _derivative);
- }
- }
- // update I term
- update_i(limit);
- float P_out = (_error * _kp);
- float D_out = (_derivative * _kd);
- _pid_info.target = 0.0f;
- _pid_info.actual = 0.0f;
- _pid_info.error = _error;
- _pid_info.P = P_out;
- _pid_info.D = D_out;
- return P_out + _integrator + D_out;
- }
- // update_i - update the integral
- // If the limit flag is set the integral is only allowed to shrink
- void AC_PID::update_i(bool limit)
- {
- if (!is_zero(_ki) && is_positive(_dt)) {
- // Ensure that integrator can only be reduced if the output is saturated
- if (!limit || ((is_positive(_integrator) && is_negative(_error)) || (is_negative(_integrator) && is_positive(_error)))) {
- _integrator += ((float)_error * _ki) * _dt;
- _integrator = constrain_float(_integrator, -_kimax, _kimax);
- }
- } else {
- _integrator = 0.0f;
- }
- _pid_info.I = _integrator;
- }
- float AC_PID::get_p() const
- {
- return _error * _kp;
- }
- float AC_PID::get_i() const
- {
- return _integrator;
- }
- float AC_PID::get_d() const
- {
- return _kd * _derivative;
- }
- float AC_PID::get_ff()
- {
- _pid_info.FF = _target * _kff;
- return _target * _kff;
- }
- // todo: remove function when it is no longer used.
- float AC_PID::get_ff(float target)
- {
- float FF_out = (target * _kff);
- _pid_info.FF = FF_out;
- return FF_out;
- }
- void AC_PID::reset_I()
- {
- _integrator = 0;
- }
- void AC_PID::load_gains()
- {
- _kp.load();
- _ki.load();
- _kd.load();
- _kff.load();
- _kimax.load();
- _kimax = fabsf(_kimax);
- _filt_T_hz.load();
- _filt_E_hz.load();
- _filt_D_hz.load();
- }
- // save_gains - save gains to eeprom
- void AC_PID::save_gains()
- {
- _kp.save();
- _ki.save();
- _kd.save();
- _kff.save();
- _kimax.save();
- _filt_T_hz.save();
- _filt_E_hz.save();
- _filt_D_hz.save();
- }
- /// Overload the function call operator to permit easy initialisation
- void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dt)
- {
- _kp = p_val;
- _ki = i_val;
- _kd = d_val;
- _kff = ff_val;
- _kimax = fabsf(imax_val);
- _filt_T_hz = input_filt_T_hz;
- _filt_E_hz = input_filt_E_hz;
- _filt_D_hz = input_filt_D_hz;
- _dt = dt;
- }
- // get_filt_T_alpha - get the target filter alpha
- float AC_PID::get_filt_T_alpha() const
- {
- return get_filt_alpha(_filt_T_hz);
- }
- // get_filt_E_alpha - get the error filter alpha
- float AC_PID::get_filt_E_alpha() const
- {
- return get_filt_alpha(_filt_E_hz);
- }
- // get_filt_D_alpha - get the derivative filter alpha
- float AC_PID::get_filt_D_alpha() const
- {
- return get_filt_alpha(_filt_D_hz);
- }
- // get_filt_alpha - calculate a filter alpha
- float AC_PID::get_filt_alpha(float filt_hz) const
- {
- if (is_zero(filt_hz)) {
- return 1.0f;
- }
- // calculate alpha
- float rc = 1 / (M_2PI * filt_hz);
- return _dt / (_dt + rc);
- }
- void AC_PID::set_integrator(float target, float measurement, float i)
- {
- set_integrator(target - measurement, i);
- }
- void AC_PID::set_integrator(float error, float i)
- {
- _integrator = constrain_float(i - error * _kp, -_kimax, _kimax);
- }
|