123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- /*
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- /*
- singlecopter simulator class
- */
- #include "SIM_SingleCopter.h"
- #include <stdio.h>
- using namespace SITL;
- SingleCopter::SingleCopter(const char *frame_str) :
- Aircraft(frame_str)
- {
- mass = 2.0f;
- if (strstr(frame_str, "coax")) {
- frame_type = FRAME_COAX;
- } else {
- frame_type = FRAME_SINGLE;
- }
-
- /*
- scaling from motor power to Newtons. Allows the copter
- to hover against gravity when the motor is at hover_throttle
- */
- thrust_scale = (mass * GRAVITY_MSS) / hover_throttle;
- frame_height = 0.1;
- }
- /*
- update the copter simulation by one time step
- */
- void SingleCopter::update(const struct sitl_input &input)
- {
- // get wind vector setup
- update_wind(input);
- float actuator[4];
- for (uint8_t i=0; i<4; i++) {
- actuator[i] = constrain_float((input.servos[i]-1500) / 500.0f, -1, 1);
- }
- float thrust;
- float yaw_thrust;
- float roll_thrust;
- float pitch_thrust;
- switch (frame_type) {
- case FRAME_SINGLE:
- thrust = constrain_float((input.servos[4]-1000) / 1000.0f, 0, 1);
- yaw_thrust = -(actuator[0] + actuator[1] + actuator[2] + actuator[3]) * 0.25f * thrust + thrust * rotor_rot_accel;
- roll_thrust = (actuator[0] - actuator[2]) * 0.5f * thrust;
- pitch_thrust = (actuator[1] - actuator[3]) * 0.5f * thrust;
- break;
- case FRAME_COAX:
- default: {
- float motor1 = constrain_float((input.servos[4]-1000) / 1000.0f, 0, 1);
- float motor2 = constrain_float((input.servos[5]-1000) / 1000.0f, 0, 1);
- thrust = 0.5f*(motor1 + motor2);
- yaw_thrust = -(actuator[0] + actuator[1] + actuator[2] + actuator[3]) * 0.25f * thrust + (motor2 - motor1) * rotor_rot_accel;
- roll_thrust = (actuator[0] - actuator[2]) * 0.5f * thrust;
- pitch_thrust = (actuator[1] - actuator[3]) * 0.5f * thrust;
- break;
- }
- }
-
- // rotational acceleration, in rad/s/s, in body frame
- Vector3f rot_accel(roll_thrust * roll_rate_max,
- pitch_thrust * pitch_rate_max,
- yaw_thrust * yaw_rate_max);
- // rotational air resistance
- rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate;
- rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate;
- rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate;
- // air resistance
- Vector3f air_resistance = -velocity_air_ef * (GRAVITY_MSS/terminal_velocity);
- // scale thrust to newtons
- thrust *= thrust_scale;
- accel_body = Vector3f(0, 0, -thrust / mass);
- accel_body += dcm.transposed() * air_resistance;
- update_dynamics(rot_accel);
-
- // update lat/lon/altitude
- update_position();
- time_advance();
- // update magnetic field
- update_mag_field_bf();
- }
|