123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518 |
- /*
- 24 state EKF based on the derivation in https://github.com/priseborough/
- InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/
- GenerateNavFilterEquations.m
- Converted from Matlab to C++ by Paul Riseborough
- EKF Tuning parameters refactored by Tom Cauchois
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #pragma once
- #include <AP_Math/AP_Math.h>
- #include <AP_Param/AP_Param.h>
- #include <GCS_MAVLink/GCS_MAVLink.h>
- #include <AP_NavEKF/AP_Nav_Common.h>
- #include <AP_Airspeed/AP_Airspeed.h>
- #include <AP_Compass/AP_Compass.h>
- #include <AP_RangeFinder/AP_RangeFinder.h>
- #include <AP_Logger/LogStructure.h>
- class NavEKF2_core;
- class AP_AHRS;
- class NavEKF2 {
- friend class NavEKF2_core;
- public:
- NavEKF2(const AP_AHRS *ahrs, const RangeFinder &rng);
- /* Do not allow copies */
- NavEKF2(const NavEKF2 &other) = delete;
- NavEKF2 &operator=(const NavEKF2&) = delete;
- static const struct AP_Param::GroupInfo var_info[];
- // allow logging to determine the number of active cores
- uint8_t activeCores(void) const {
- return num_cores;
- }
- // Initialise the filter
- bool InitialiseFilter(void);
- // Update Filter States - this should be called whenever new IMU data is available
- void UpdateFilter(void);
- // check if we should write log messages
- void check_log_write(void);
-
- // Check basic filter health metrics and return a consolidated health status
- bool healthy(void) const;
- // Ensure that all started cores are considered healthy
- bool all_cores_healthy(void) const;
- // returns the index of the primary core
- // return -1 if no primary core selected
- int8_t getPrimaryCoreIndex(void) const;
- // returns the index of the IMU of the primary core
- // return -1 if no primary core selected
- int8_t getPrimaryCoreIMUIndex(void) const;
-
- // Write the last calculated NE position relative to the reference point (m) for the specified instance.
- // An out of range instance (eg -1) returns data for the primary instance
- // If a calculated solution is not available, use the best available data and return false
- // If false returned, do not use for flight control
- bool getPosNE(int8_t instance, Vector2f &posNE) const;
- // Write the last calculated D position relative to the reference point (m) for the specified instance.
- // An out of range instance (eg -1) returns data for the primary instance
- // If a calculated solution is not available, use the best available data and return false
- // If false returned, do not use for flight control
- bool getPosD(int8_t instance, float &posD) const;
- // return NED velocity in m/s for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- void getVelNED(int8_t instance, Vector3f &vel) const;
- // Return the rate of change of vertical position in the down direction (dPosD/dt) in m/s for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- // This can be different to the z component of the EKF velocity state because it will fluctuate with height errors and corrections in the EKF
- // but will always be kinematically consistent with the z component of the EKF position state
- float getPosDownDerivative(int8_t instance) const;
- // This returns the specific forces in the NED frame
- void getAccelNED(Vector3f &accelNED) const;
- // return body axis gyro bias estimates in rad/sec for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- void getGyroBias(int8_t instance, Vector3f &gyroBias) const;
- // return body axis gyro scale factor error as a percentage for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- void getGyroScaleErrorPercentage(int8_t instance, Vector3f &gyroScale) const;
- // return tilt error convergence metric for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- void getTiltError(int8_t instance, float &ang) const;
- // reset body axis gyro bias estimates
- void resetGyroBias(void);
- // Resets the baro so that it reads zero at the current height
- // Resets the EKF height to zero
- // Adjusts the EKf origin height so that the EKF height + origin height is the same as before
- // Returns true if the height datum reset has been performed
- // If using a range finder for height no reset is performed and it returns false
- bool resetHeightDatum(void);
- // Commands the EKF to not use GPS.
- // This command must be sent prior to arming as it will only be actioned when the filter is in static mode
- // This command is forgotten by the EKF each time it goes back into static mode (eg the vehicle disarms)
- // Returns 0 if command rejected
- // Returns 1 if attitude, vertical velocity and vertical position will be provided
- // Returns 2 if attitude, 3D-velocity, vertical position and relative horizontal position will be provided
- uint8_t setInhibitGPS(void);
- // Set the argument to true to prevent the EKF using the GPS vertical velocity
- // This can be used for situations where GPS velocity errors are causing problems with height accuracy
- void setInhibitGpsVertVelUse(const bool varIn) { inhibitGpsVertVelUse = varIn; };
- // return the horizontal speed limit in m/s set by optical flow sensor limits
- // return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
- void getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const;
- // return the Z-accel bias estimate in m/s^2 for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- void getAccelZBias(int8_t instance, float &zbias) const;
- // return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
- // An out of range instance (eg -1) returns data for the primary instance
- void getWind(int8_t instance, Vector3f &wind) const;
- // return earth magnetic field estimates in measurement units / 1000 for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- void getMagNED(int8_t instance, Vector3f &magNED) const;
- // return body magnetic field estimates in measurement units / 1000 for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- void getMagXYZ(int8_t instance, Vector3f &magXYZ) const;
- // return the magnetometer in use for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- uint8_t getActiveMag(int8_t instance) const;
- // Return estimated magnetometer offsets
- // Return true if magnetometer offsets are valid
- bool getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const;
- // Return the last calculated latitude, longitude and height in WGS-84
- // If a calculated location isn't available, return a raw GPS measurement
- // The status will return true if a calculation or raw measurement is available
- // The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
- bool getLLH(struct Location &loc) const;
- // Return the latitude and longitude and height used to set the NED origin for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- // All NED positions calculated by the filter are relative to this location
- // Returns false if the origin has not been set
- bool getOriginLLH(int8_t instance, struct Location &loc) const;
- // set the latitude and longitude and height used to set the NED origin
- // All NED positions calculated by the filter will be relative to this location
- // The origin cannot be set if the filter is in a flight mode (eg vehicle armed)
- // Returns false if the filter has rejected the attempt to set the origin
- bool setOriginLLH(const Location &loc);
- // return estimated height above ground level
- // return false if ground height is not being estimated.
- bool getHAGL(float &HAGL) const;
- // return the Euler roll, pitch and yaw angle in radians for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- void getEulerAngles(int8_t instance, Vector3f &eulers) const;
- // return the transformation matrix from XYZ (body) to NED axes
- void getRotationBodyToNED(Matrix3f &mat) const;
- // return the transformation matrix from XYZ (body) to NED axes
- void getQuaternionBodyToNED(int8_t instance, Quaternion &quat) const;
- // return the quaternions defining the rotation from NED to autopilot axes
- void getQuaternion(int8_t instance, Quaternion &quat) const;
- // return the innovations for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- void getInnovations(int8_t index, Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const;
- // publish output observer angular, velocity and position tracking error
- void getOutputTrackingError(int8_t instance, Vector3f &error) const;
- // return the innovation consistency test ratios for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- void getVariances(int8_t instance, float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const;
- // should we use the compass? This is public so it can be used for
- // reporting via ahrs.use_compass()
- bool use_compass(void) const;
- // write the raw optical flow measurements
- // rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality
- // rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes.
- // rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro
- // The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
- // msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
- // posOffset is the XYZ flow sensor position in the body frame in m
- void writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset);
- // return data for debugging optical flow fusion for the specified instance
- // An out of range instance (eg -1) returns data for the primary instance
- void getFlowDebug(int8_t instance, float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const;
- /*
- Returns the following data for debugging range beacon fusion from the specified instance
- An out of range instance (eg -1) returns data for the primary instance
- ID : beacon identifier
- rng : measured range to beacon (m)
- innov : range innovation (m)
- innovVar : innovation variance (m^2)
- testRatio : innovation consistency test ratio
- beaconPosNED : beacon NED position (m)
- returns true if data could be found, false if it could not
- */
- bool getRangeBeaconDebug(int8_t instance, uint8_t &ID, float &rng, float &innov, float &innovVar, float &testRatio, Vector3f &beaconPosNED, float &offsetHigh, float &offsetLow) const;
- // called by vehicle code to specify that a takeoff is happening
- // causes the EKF to compensate for expected barometer errors due to ground effect
- void setTakeoffExpected(bool val);
- // called by vehicle code to specify that a touchdown is expected to happen
- // causes the EKF to compensate for expected barometer errors due to ground effect
- void setTouchdownExpected(bool val);
- // Set to true if the terrain underneath is stable enough to be used as a height reference
- // in combination with a range finder. Set to false if the terrain underneath the vehicle
- // cannot be used as a height reference
- void setTerrainHgtStable(bool val);
- /*
- return the filter fault status as a bitmasked integer for the specified instance
- An out of range instance (eg -1) returns data for the primary instance
- 0 = quaternions are NaN
- 1 = velocities are NaN
- 2 = badly conditioned X magnetometer fusion
- 3 = badly conditioned Y magnetometer fusion
- 5 = badly conditioned Z magnetometer fusion
- 6 = badly conditioned airspeed fusion
- 7 = badly conditioned synthetic sideslip fusion
- 7 = filter is not initialised
- */
- void getFilterFaults(int8_t instance, uint16_t &faults) const;
- /*
- return filter timeout status as a bitmasked integer for the specified instance
- An out of range instance (eg -1) returns data for the primary instance
- 0 = position measurement timeout
- 1 = velocity measurement timeout
- 2 = height measurement timeout
- 3 = magnetometer measurement timeout
- 5 = unassigned
- 6 = unassigned
- 7 = unassigned
- 7 = unassigned
- */
- void getFilterTimeouts(int8_t instance, uint8_t &timeouts) const;
- /*
- return filter gps quality check status for the specified instance
- An out of range instance (eg -1) returns data for the primary instance
- */
- void getFilterGpsStatus(int8_t instance, nav_gps_status &faults) const;
- /*
- return filter status flags for the specified instance
- An out of range instance (eg -1) returns data for the primary instance
- */
- void getFilterStatus(int8_t instance, nav_filter_status &status) const;
- // send an EKF_STATUS_REPORT message to GCS
- void send_status_report(mavlink_channel_t chan);
- // provides the height limit to be observed by the control loops
- // returns false if no height limiting is required
- // this is needed to ensure the vehicle does not fly too high when using optical flow navigation
- bool getHeightControlLimit(float &height) const;
- // return the amount of yaw angle change (in radians) due to the last yaw angle reset or core selection switch
- // returns the time of the last yaw angle reset or 0 if no reset has ever occurred
- uint32_t getLastYawResetAngle(float &yawAngDelta);
- // return the amount of NE position change due to the last position reset in metres
- // returns the time of the last reset or 0 if no reset has ever occurred
- uint32_t getLastPosNorthEastReset(Vector2f &posDelta);
- // return the amount of NE velocity change due to the last velocity reset in metres/sec
- // returns the time of the last reset or 0 if no reset has ever occurred
- uint32_t getLastVelNorthEastReset(Vector2f &vel) const;
- // return the amount of vertical position change due to the last reset in metres
- // returns the time of the last reset or 0 if no reset has ever occurred
- uint32_t getLastPosDownReset(float &posDelta);
- // report any reason for why the backend is refusing to initialise
- const char *prearm_failure_reason(void) const;
- // set and save the _baroAltNoise parameter
- void set_baro_alt_noise(float noise) { _baroAltNoise.set_and_save(noise); };
- // allow the enable flag to be set by Replay
- void set_enable(bool enable) { _enable.set(enable); }
- // are we doing sensor logging inside the EKF?
- bool have_ekf_logging(void) const { return logging.enabled && _logging_mask != 0; }
- // get timing statistics structure
- void getTimingStatistics(int8_t instance, struct ekf_timing &timing) const;
- /*
- * Write position and quaternion data from an external navigation system
- *
- * pos : position in the RH navigation frame. Frame is assumed to be NED if frameIsNED is true. (m)
- * quat : quaternion desribing the rotation from navigation frame to body frame
- * posErr : 1-sigma spherical position error (m)
- * angErr : 1-sigma spherical angle error (rad)
- * timeStamp_ms : system time the measurement was taken, not the time it was received (mSec)
- * resetTime_ms : system time of the last position reset request (mSec)
- *
- */
- void writeExtNavData(const Vector3f &sensOffset, const Vector3f &pos, const Quaternion &quat, float posErr, float angErr, uint32_t timeStamp_ms, uint32_t resetTime_ms);
- /*
- check if switching lanes will reduce the normalised
- innovations. This is called when the vehicle code is about to
- trigger an EKF failsafe, and it would like to avoid that by
- using a different EKF lane
- */
- void checkLaneSwitch(void);
- // write EKF information to on-board logs
- void Log_Write();
- // check if external navigation is being used for yaw observation
- bool isExtNavUsedForYaw(void) const;
- private:
- uint8_t num_cores; // number of allocated cores
- uint8_t primary; // current primary core
- NavEKF2_core *core = nullptr;
- const AP_AHRS *_ahrs;
- const RangeFinder &_rng;
- uint32_t _frameTimeUsec; // time per IMU frame
- uint8_t _framesPerPrediction; // expected number of IMU frames per prediction
- // EKF Mavlink Tuneable Parameters
- AP_Int8 _enable; // zero to disable EKF2
- AP_Float _gpsHorizVelNoise; // GPS horizontal velocity measurement noise : m/s
- AP_Float _gpsVertVelNoise; // GPS vertical velocity measurement noise : m/s
- AP_Float _gpsHorizPosNoise; // GPS horizontal position measurement noise m
- AP_Float _baroAltNoise; // Baro height measurement noise : m
- AP_Float _magNoise; // magnetometer measurement noise : gauss
- AP_Float _easNoise; // equivalent airspeed measurement noise : m/s
- AP_Float _windVelProcessNoise; // wind velocity state process noise : m/s^2
- AP_Float _wndVarHgtRateScale; // scale factor applied to wind process noise due to height rate
- AP_Float _magEarthProcessNoise; // Earth magnetic field process noise : gauss/sec
- AP_Float _magBodyProcessNoise; // Body magnetic field process noise : gauss/sec
- AP_Float _gyrNoise; // gyro process noise : rad/s
- AP_Float _accNoise; // accelerometer process noise : m/s^2
- AP_Float _gyroBiasProcessNoise; // gyro bias state process noise : rad/s
- AP_Float _accelBiasProcessNoise;// accel bias state process noise : m/s^2
- AP_Int16 _hgtDelay_ms; // effective average delay of Height measurements relative to inertial measurements (msec)
- AP_Int8 _fusionModeGPS; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity
- AP_Int16 _gpsVelInnovGate; // Percentage number of standard deviations applied to GPS velocity innovation consistency check
- AP_Int16 _gpsPosInnovGate; // Percentage number of standard deviations applied to GPS position innovation consistency check
- AP_Int16 _hgtInnovGate; // Percentage number of standard deviations applied to height innovation consistency check
- AP_Int16 _magInnovGate; // Percentage number of standard deviations applied to magnetometer innovation consistency check
- AP_Int16 _tasInnovGate; // Percentage number of standard deviations applied to true airspeed innovation consistency check
- AP_Int8 _magCal; // Sets activation condition for in-flight magnetometer calibration
- AP_Int8 _gpsGlitchRadiusMax; // Maximum allowed discrepancy between inertial and GPS Horizontal position before GPS glitch is declared : m
- AP_Float _flowNoise; // optical flow rate measurement noise
- AP_Int16 _flowInnovGate; // Percentage number of standard deviations applied to optical flow innovation consistency check
- AP_Int8 _flowDelay_ms; // effective average delay of optical flow measurements rel to IMU (msec)
- AP_Int16 _rngInnovGate; // Percentage number of standard deviations applied to range finder innovation consistency check
- AP_Float _maxFlowRate; // Maximum flow rate magnitude that will be accepted by the filter
- AP_Int8 _altSource; // Primary alt source during optical flow navigation. 0 = use Baro, 1 = use range finder.
- AP_Float _gyroScaleProcessNoise;// gyro scale factor state process noise : 1/s
- AP_Float _rngNoise; // Range finder noise : m
- AP_Int8 _gpsCheck; // Bitmask controlling which preflight GPS checks are bypassed
- AP_Int8 _imuMask; // Bitmask of IMUs to instantiate EKF2 for
- AP_Int16 _gpsCheckScaler; // Percentage increase to be applied to GPS pre-flight accuracy and drift thresholds
- AP_Float _noaidHorizNoise; // horizontal position measurement noise assumed when synthesised zero position measurements are used to constrain attitude drift : m
- AP_Int8 _logging_mask; // mask of IMUs to log
- AP_Float _yawNoise; // magnetic yaw measurement noise : rad
- AP_Int16 _yawInnovGate; // Percentage number of standard deviations applied to magnetic yaw innovation consistency check
- AP_Int8 _tauVelPosOutput; // Time constant of output complementary filter : csec (centi-seconds)
- AP_Int8 _useRngSwHgt; // Maximum valid range of the range finder as a percentage of the maximum range specified by the sensor driver
- AP_Float _terrGradMax; // Maximum terrain gradient below the vehicle
- AP_Float _rngBcnNoise; // Range beacon measurement noise (m)
- AP_Int16 _rngBcnInnovGate; // Percentage number of standard deviations applied to range beacon innovation consistency check
- AP_Int8 _rngBcnDelay_ms; // effective average delay of range beacon measurements rel to IMU (msec)
- AP_Float _useRngSwSpd; // Maximum horizontal ground speed to use range finder as the primary height source (m/s)
- AP_Int8 _magMask; // Bitmask forcng specific EKF core instances to use simple heading magnetometer fusion.
- AP_Int8 _originHgtMode; // Bitmask controlling post alignment correction and reporting of the EKF origin height.
- AP_Int8 _extnavDelay_ms; // effective average delay of external nav system measurements relative to inertial measurements (msec)
- AP_Int8 _flowUse; // Controls if the optical flow data is fused into the main navigation estimator and/or the terrain estimator.
- AP_Int16 _mag_ef_limit; // limit on difference between WMM tables and learned earth field.
- // Possible values for _flowUse
- #define FLOW_USE_NONE 0
- #define FLOW_USE_NAV 1
- #define FLOW_USE_TERRAIN 2
- // Tuning parameters
- const float gpsNEVelVarAccScale = 0.05f; // Scale factor applied to NE velocity measurement variance due to manoeuvre acceleration
- const float gpsDVelVarAccScale = 0.07f; // Scale factor applied to vertical velocity measurement variance due to manoeuvre acceleration
- const float gpsPosVarAccScale = 0.05f; // Scale factor applied to horizontal position measurement variance due to manoeuvre acceleration
- const uint8_t magDelay_ms = 60; // Magnetometer measurement delay (msec)
- const uint8_t tasDelay_ms = 240; // Airspeed measurement delay (msec)
- const uint16_t tiltDriftTimeMax_ms = 15000; // Maximum number of ms allowed without any form of tilt aiding (GPS, flow, TAS, etc)
- const uint16_t posRetryTimeUseVel_ms = 10000; // Position aiding retry time with velocity measurements (msec)
- const uint16_t posRetryTimeNoVel_ms = 7000; // Position aiding retry time without velocity measurements (msec)
- const uint16_t hgtRetryTimeMode0_ms = 10000; // Height retry time with vertical velocity measurement (msec)
- const uint16_t hgtRetryTimeMode12_ms = 5000; // Height retry time without vertical velocity measurement (msec)
- const uint16_t tasRetryTime_ms = 5000; // True airspeed timeout and retry interval (msec)
- const uint16_t magFailTimeLimit_ms = 10000; // number of msec before a magnetometer failing innovation consistency checks is declared failed (msec)
- const float magVarRateScale = 0.005f; // scale factor applied to magnetometer variance due to angular rate
- const float gyroBiasNoiseScaler = 2.0f; // scale factor applied to gyro bias state process noise when on ground
- const uint8_t hgtAvg_ms = 100; // average number of msec between height measurements
- const uint8_t betaAvg_ms = 100; // average number of msec between synthetic sideslip measurements
- const float covTimeStepMax = 0.1f; // maximum time (sec) between covariance prediction updates
- const float covDelAngMax = 0.05f; // maximum delta angle between covariance prediction updates
- const float DCM33FlowMin = 0.71f; // If Tbn(3,3) is less than this number, optical flow measurements will not be fused as tilt is too high.
- const float fScaleFactorPnoise = 1e-10f; // Process noise added to focal length scale factor state variance at each time step
- const uint8_t flowTimeDeltaAvg_ms = 100; // average interval between optical flow measurements (msec)
- const uint8_t flowIntervalMax_ms = 100; // maximum allowable time between flow fusion events
- const uint16_t gndEffectTimeout_ms = 1000; // time in msec that ground effect mode is active after being activated
- const float gndEffectBaroScaler = 4.0f; // scaler applied to the barometer observation variance when ground effect mode is active
- const uint8_t fusionTimeStep_ms = 10; // The minimum time interval between covariance predictions and measurement fusions in msec
- // origin set by one of the cores
- struct Location common_EKF_origin;
- bool common_origin_valid;
- struct {
- bool enabled:1;
- bool log_compass:1;
- bool log_baro:1;
- bool log_imu:1;
- } logging;
- // time at start of current filter update
- uint64_t imuSampleTime_us;
-
- struct {
- uint32_t last_function_call; // last time getLastYawYawResetAngle was called
- bool core_changed; // true when a core change happened and hasn't been consumed, false otherwise
- uint32_t last_primary_change; // last time a primary has changed
- float core_delta; // the amount of yaw change between cores when a change happened
- } yaw_reset_data;
- struct {
- uint32_t last_function_call; // last time getLastPosNorthEastReset was called
- bool core_changed; // true when a core change happened and hasn't been consumed, false otherwise
- uint32_t last_primary_change; // last time a primary has changed
- Vector2f core_delta; // the amount of NE position change between cores when a change happened
- } pos_reset_data;
- struct {
- uint32_t last_function_call; // last time getLastPosDownReset was called
- bool core_changed; // true when a core change happened and hasn't been consumed, false otherwise
- uint32_t last_primary_change; // last time a primary has changed
- float core_delta; // the amount of D position change between cores when a change happened
- } pos_down_reset_data;
- bool runCoreSelection; // true when the primary core has stabilised and the core selection logic can be started
- bool inhibitGpsVertVelUse; // true when GPS vertical velocity use is prohibited
- // time of last lane switch
- uint32_t lastLaneSwitch_ms;
- // update the yaw reset data to capture changes due to a lane switch
- // new_primary - index of the ekf instance that we are about to switch to as the primary
- // old_primary - index of the ekf instance that we are currently using as the primary
- void updateLaneSwitchYawResetData(uint8_t new_primary, uint8_t old_primary);
- // update the position reset data to capture changes due to a lane switch
- // new_primary - index of the ekf instance that we are about to switch to as the primary
- // old_primary - index of the ekf instance that we are currently using as the primary
- void updateLaneSwitchPosResetData(uint8_t new_primary, uint8_t old_primary);
- // update the position down reset data to capture changes due to a lane switch
- // new_primary - index of the ekf instance that we are about to switch to as the primary
- // old_primary - index of the ekf instance that we are currently using as the primary
- void updateLaneSwitchPosDownResetData(uint8_t new_primary, uint8_t old_primary);
- // logging functions shared by cores:
- void Log_Write_EKF1(uint8_t core, LogMessages msg_id, uint64_t time_us) const;
- void Log_Write_NKF2(uint8_t core, LogMessages msg_id, uint64_t time_us) const;
- void Log_Write_NKF3(uint8_t core, LogMessages msg_id, uint64_t time_us) const;
- void Log_Write_NKF4(uint8_t core, LogMessages msg_id, uint64_t time_us) const;
- void Log_Write_NKF5(uint64_t time_us) const;
- void Log_Write_Quaternion(uint8_t core, LogMessages msg_id, uint64_t time_us) const;
- void Log_Write_Beacon(uint64_t time_us) const;
- };
|