123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- #pragma once
- #include <cmath>
- #include <limits>
- #include <stdint.h>
- #include <type_traits>
- #include <AP_Common/AP_Common.h>
- #include <AP_Param/AP_Param.h>
- #include "definitions.h"
- #include "crc.h"
- #include "matrix3.h"
- #include "polygon.h"
- #include "quaternion.h"
- #include "rotations.h"
- #include "vector2.h"
- #include "vector3.h"
- #include "spline5.h"
- #include "location.h"
- #include "vector4.h"
- #include "matrix4.h"
- // define AP_Param types AP_Vector3f and Ap_Matrix3f
- AP_PARAMDEFV(Vector3f, Vector3f, AP_PARAM_VECTOR3F);
- /*
- * Check whether two floats are equal
- */
- template <typename Arithmetic1, typename Arithmetic2>
- typename std::enable_if<std::is_integral<typename std::common_type<Arithmetic1, Arithmetic2>::type>::value ,bool>::type
- is_equal(const Arithmetic1 v_1, const Arithmetic2 v_2);
- template <typename Arithmetic1, typename Arithmetic2>
- typename std::enable_if<std::is_floating_point<typename std::common_type<Arithmetic1, Arithmetic2>::type>::value, bool>::type
- is_equal(const Arithmetic1 v_1, const Arithmetic2 v_2);
- /*
- * @brief: Check whether a float is zero
- */
- template <typename T>
- inline bool is_zero(const T fVal1) {
- static_assert(std::is_floating_point<T>::value || std::is_base_of<T,AP_Float>::value,
- "Template parameter not of type float");
- return (fabsf(static_cast<float>(fVal1)) < FLT_EPSILON);
- }
- /*
- * @brief: Check whether a float is greater than zero
- */
- template <typename T>
- inline bool is_positive(const T fVal1) {
- static_assert(std::is_floating_point<T>::value || std::is_base_of<T,AP_Float>::value,
- "Template parameter not of type float");
- return (static_cast<float>(fVal1) >= FLT_EPSILON);
- }
- /*
- * @brief: Check whether a float is less than zero
- */
- template <typename T>
- inline bool is_negative(const T fVal1) {
- static_assert(std::is_floating_point<T>::value || std::is_base_of<T,AP_Float>::value,
- "Template parameter not of type float");
- return (static_cast<float>(fVal1) <= (-1.0 * FLT_EPSILON));
- }
- /*
- * A variant of asin() that checks the input ranges and ensures a valid angle
- * as output. If nan is given as input then zero is returned.
- */
- template <typename T>
- float safe_asin(const T v);
- /*
- * A variant of sqrt() that checks the input ranges and ensures a valid value
- * as output. If a negative number is given then 0 is returned. The reasoning
- * is that a negative number for sqrt() in our code is usually caused by small
- * numerical rounding errors, so the real input should have been zero
- */
- template <typename T>
- float safe_sqrt(const T v);
- // invOut is an inverted 4x4 matrix when returns true, otherwise matrix is Singular
- bool inverse3x3(float m[], float invOut[]) WARN_IF_UNUSED;
- // invOut is an inverted 3x3 matrix when returns true, otherwise matrix is Singular
- bool inverse4x4(float m[],float invOut[]) WARN_IF_UNUSED;
- // matrix multiplication of two NxN matrices
- float *mat_mul(float *A, float *B, uint8_t n);
- // matrix algebra
- bool inverse(float x[], float y[], uint16_t dim) WARN_IF_UNUSED;
- /*
- * Constrain an angle to be within the range: -180 to 180 degrees. The second
- * parameter changes the units. Default: 1 == degrees, 10 == dezi,
- * 100 == centi.
- */
- template <typename T>
- float wrap_180(const T angle, float unit_mod = 1);
- /*
- * Wrap an angle in centi-degrees. See wrap_180().
- */
- template <typename T>
- auto wrap_180_cd(const T angle) -> decltype(wrap_180(angle, 100.f));
- /*
- * Constrain an euler angle to be within the range: 0 to 360 degrees. The
- * second parameter changes the units. Default: 1 == degrees, 10 == dezi,
- * 100 == centi.
- */
- template <typename T>
- float wrap_360(const T angle, float unit_mod = 1);
- /*
- * Wrap an angle in centi-degrees. See wrap_360().
- */
- template <typename T>
- auto wrap_360_cd(const T angle) -> decltype(wrap_360(angle, 100.f));
- /*
- wrap an angle in radians to -PI ~ PI (equivalent to +- 180 degrees)
- */
- template <typename T>
- float wrap_PI(const T radian);
- /*
- * wrap an angle in radians to 0..2PI
- */
- template <typename T>
- float wrap_2PI(const T radian);
- /*
- * Constrain a value to be within the range: low and high
- */
- template <typename T>
- T constrain_value(const T amt, const T low, const T high);
- inline float constrain_float(const float amt, const float low, const float high)
- {
- return constrain_value(amt, low, high);
- }
- inline int16_t constrain_int16(const int16_t amt, const int16_t low, const int16_t high)
- {
- return constrain_value(amt, low, high);
- }
- inline int32_t constrain_int32(const int32_t amt, const int32_t low, const int32_t high)
- {
- return constrain_value(amt, low, high);
- }
- inline int64_t constrain_int64(const int64_t amt, const int64_t low, const int64_t high)
- {
- return constrain_value(amt, low, high);
- }
- // degrees -> radians
- static inline constexpr float radians(float deg)
- {
- return deg * DEG_TO_RAD;
- }
- // radians -> degrees
- static inline constexpr float degrees(float rad)
- {
- return rad * RAD_TO_DEG;
- }
- template<typename T>
- float sq(const T val)
- {
- float v = static_cast<float>(val);
- return v*v;
- }
- /*
- * Variadic template for calculating the square norm of a vector of any
- * dimension.
- */
- template<typename T, typename... Params>
- float sq(const T first, const Params... parameters)
- {
- return sq(first) + sq(parameters...);
- }
- /*
- * Variadic template for calculating the norm (pythagoras) of a vector of any
- * dimension.
- */
- template<typename T, typename U, typename... Params>
- float norm(const T first, const U second, const Params... parameters)
- {
- return sqrtf(sq(first, second, parameters...));
- }
- template<typename A, typename B>
- static inline auto MIN(const A &one, const B &two) -> decltype(one < two ? one : two)
- {
- return one < two ? one : two;
- }
- template<typename A, typename B>
- static inline auto MAX(const A &one, const B &two) -> decltype(one > two ? one : two)
- {
- return one > two ? one : two;
- }
- inline uint32_t hz_to_nsec(uint32_t freq)
- {
- return AP_NSEC_PER_SEC / freq;
- }
- inline uint32_t nsec_to_hz(uint32_t nsec)
- {
- return AP_NSEC_PER_SEC / nsec;
- }
- inline uint32_t usec_to_nsec(uint32_t usec)
- {
- return usec * AP_NSEC_PER_USEC;
- }
- inline uint32_t nsec_to_usec(uint32_t nsec)
- {
- return nsec / AP_NSEC_PER_USEC;
- }
- inline uint32_t hz_to_usec(uint32_t freq)
- {
- return AP_USEC_PER_SEC / freq;
- }
- inline uint32_t usec_to_hz(uint32_t usec)
- {
- return AP_USEC_PER_SEC / usec;
- }
- /*
- linear interpolation based on a variable in a range
- */
- float linear_interpolate(float low_output, float high_output,
- float var_value,
- float var_low, float var_high);
- /* cubic "expo" curve generator
- * alpha range: [0,1] min to max expo
- * input range: [-1,1]
- */
- float expo_curve(float alpha, float input);
- /* throttle curve generator
- * thr_mid: output at mid stick
- * alpha: expo coefficient
- * thr_in: [0-1]
- */
- float throttle_curve(float thr_mid, float alpha, float thr_in);
- /* simple 16 bit random number generator */
- uint16_t get_random16(void);
- // generate a random float between -1 and 1, for use in SITL
- float rand_float(void);
- // generate a random Vector3f of size 1
- Vector3f rand_vec3f(void);
- // confirm a value is a valid octal value
- bool is_valid_octal(uint16_t octal) WARN_IF_UNUSED;
- // return true if two rotations are equal
- bool rotation_equal(enum Rotation r1, enum Rotation r2) WARN_IF_UNUSED;
- #if CONFIG_HAL_BOARD == HAL_BOARD_SITL
- // fill an array of float with NaN, used to invalidate memory in SITL
- void fill_nanf(float *f, uint16_t count);
- #endif
|