123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574 |
- #include <AP_HAL/AP_HAL.h>
- #include "AP_InertialSensor.h"
- #include "AP_InertialSensor_Backend.h"
- #include <AP_Logger/AP_Logger.h>
- #if AP_MODULE_SUPPORTED
- #include <AP_Module/AP_Module.h>
- #include <stdio.h>
- #endif
- #define SENSOR_RATE_DEBUG 0
- const extern AP_HAL::HAL& hal;
- AP_InertialSensor_Backend::AP_InertialSensor_Backend(AP_InertialSensor &imu) :
- _imu(imu)
- {
- }
- /*
- notify of a FIFO reset so we don't use bad data to update observed sensor rate
- */
- void AP_InertialSensor_Backend::notify_accel_fifo_reset(uint8_t instance)
- {
- _imu._sample_accel_count[instance] = 0;
- _imu._sample_accel_start_us[instance] = 0;
- }
- /*
- notify of a FIFO reset so we don't use bad data to update observed sensor rate
- */
- void AP_InertialSensor_Backend::notify_gyro_fifo_reset(uint8_t instance)
- {
- _imu._sample_gyro_count[instance] = 0;
- _imu._sample_gyro_start_us[instance] = 0;
- }
- // set the amount of oversamping a accel is doing
- void AP_InertialSensor_Backend::_set_accel_oversampling(uint8_t instance, uint8_t n)
- {
- _imu._accel_over_sampling[instance] = n;
- }
- // set the amount of oversamping a gyro is doing
- void AP_InertialSensor_Backend::_set_gyro_oversampling(uint8_t instance, uint8_t n)
- {
- _imu._gyro_over_sampling[instance] = n;
- }
- /*
- update the sensor rate for FIFO sensors
- FIFO sensors produce samples at a fixed rate, but the clock in the
- sensor may vary slightly from the system clock. This slowly adjusts
- the rate to the observed rate
- */
- void AP_InertialSensor_Backend::_update_sensor_rate(uint16_t &count, uint32_t &start_us, float &rate_hz) const
- {
- uint32_t now = AP_HAL::micros();
- if (start_us == 0) {
- count = 0;
- start_us = now;
- } else {
- count++;
- if (now - start_us > 1000000UL) {
- float observed_rate_hz = count * 1.0e6f / (now - start_us);
- #if SENSOR_RATE_DEBUG
- printf("RATE: %.1f should be %.1f\n", observed_rate_hz, rate_hz);
- #endif
- float filter_constant = 0.98f;
- float upper_limit = 1.05f;
- float lower_limit = 0.95f;
- if (sensors_converging()) {
- // converge quickly for first 30s, then more slowly
- filter_constant = 0.8f;
- upper_limit = 2.0f;
- lower_limit = 0.5f;
- }
- observed_rate_hz = constrain_float(observed_rate_hz, rate_hz*lower_limit, rate_hz*upper_limit);
- rate_hz = filter_constant * rate_hz + (1-filter_constant) * observed_rate_hz;
- count = 0;
- start_us = now;
- }
- }
- }
- void AP_InertialSensor_Backend::_rotate_and_correct_accel(uint8_t instance, Vector3f &accel)
- {
- /*
- accel calibration is always done in sensor frame with this
- version of the code. That means we apply the rotation after the
- offsets and scaling.
- */
- // rotate for sensor orientation
- accel.rotate(_imu._accel_orientation[instance]);
-
- // apply offsets
- accel -= _imu._accel_offset[instance];
- // apply scaling
- const Vector3f &accel_scale = _imu._accel_scale[instance].get();
- accel.x *= accel_scale.x;
- accel.y *= accel_scale.y;
- accel.z *= accel_scale.z;
- // rotate to body frame
- if (_imu._board_orientation == ROTATION_CUSTOM && _imu._custom_rotation) {
- accel = *_imu._custom_rotation * accel;
- } else {
- accel.rotate(_imu._board_orientation);
- }
- }
- void AP_InertialSensor_Backend::_rotate_and_correct_gyro(uint8_t instance, Vector3f &gyro)
- {
- // rotate for sensor orientation
- gyro.rotate(_imu._gyro_orientation[instance]);
-
- // gyro calibration is always assumed to have been done in sensor frame
- gyro -= _imu._gyro_offset[instance];
- if (_imu._board_orientation == ROTATION_CUSTOM && _imu._custom_rotation) {
- gyro = *_imu._custom_rotation * gyro;
- } else {
- gyro.rotate(_imu._board_orientation);
- }
- }
- /*
- rotate gyro vector and add the gyro offset
- */
- void AP_InertialSensor_Backend::_publish_gyro(uint8_t instance, const Vector3f &gyro)
- {
- if ((1U<<instance) & _imu.imu_kill_mask) {
- return;
- }
- _imu._gyro[instance] = gyro;
- _imu._gyro_healthy[instance] = true;
- // publish delta angle
- _imu._delta_angle[instance] = _imu._delta_angle_acc[instance];
- _imu._delta_angle_dt[instance] = _imu._delta_angle_acc_dt[instance];
- _imu._delta_angle_valid[instance] = true;
- }
- void AP_InertialSensor_Backend::_notify_new_gyro_raw_sample(uint8_t instance,
- const Vector3f &gyro,
- uint64_t sample_us)
- {
- if ((1U<<instance) & _imu.imu_kill_mask) {
- return;
- }
- float dt;
- _update_sensor_rate(_imu._sample_gyro_count[instance], _imu._sample_gyro_start_us[instance],
- _imu._gyro_raw_sample_rates[instance]);
- uint64_t last_sample_us = _imu._gyro_last_sample_us[instance];
- /*
- we have two classes of sensors. FIFO based sensors produce data
- at a very predictable overall rate, but the data comes in
- bunches, so we use the provided sample rate for deltaT. Non-FIFO
- sensors don't bunch up samples, but also tend to vary in actual
- rate, so we use the provided sample_us to get the deltaT. The
- difference between the two is whether sample_us is provided.
- */
- if (sample_us != 0 && _imu._gyro_last_sample_us[instance] != 0) {
- dt = (sample_us - _imu._gyro_last_sample_us[instance]) * 1.0e-6f;
- _imu._gyro_last_sample_us[instance] = sample_us;
- } else {
- // don't accept below 100Hz
- if (_imu._gyro_raw_sample_rates[instance] < 100) {
- return;
- }
- dt = 1.0f / _imu._gyro_raw_sample_rates[instance];
- _imu._gyro_last_sample_us[instance] = AP_HAL::micros64();
- }
- #if AP_MODULE_SUPPORTED
- // call gyro_sample hook if any
- AP_Module::call_hook_gyro_sample(instance, dt, gyro);
- #endif
- // push gyros if optical flow present
- if (hal.opticalflow) {
- hal.opticalflow->push_gyro(gyro.x, gyro.y, dt);
- }
-
- // compute delta angle
- Vector3f delta_angle = (gyro + _imu._last_raw_gyro[instance]) * 0.5f * dt;
- // compute coning correction
- // see page 26 of:
- // Tian et al (2010) Three-loop Integration of GPS and Strapdown INS with Coning and Sculling Compensation
- // Available: http://www.sage.unsw.edu.au/snap/publications/tian_etal2010b.pdf
- // see also examples/coning.py
- Vector3f delta_coning = (_imu._delta_angle_acc[instance] +
- _imu._last_delta_angle[instance] * (1.0f / 6.0f));
- delta_coning = delta_coning % delta_angle;
- delta_coning *= 0.5f;
- {
- WITH_SEMAPHORE(_sem);
- uint64_t now = AP_HAL::micros64();
- if (now - last_sample_us > 100000U) {
- // zero accumulator if sensor was unhealthy for 0.1s
- _imu._delta_angle_acc[instance].zero();
- _imu._delta_angle_acc_dt[instance] = 0;
- dt = 0;
- delta_angle.zero();
- }
- // integrate delta angle accumulator
- // the angles and coning corrections are accumulated separately in the
- // referenced paper, but in simulation little difference was found between
- // integrating together and integrating separately (see examples/coning.py)
- _imu._delta_angle_acc[instance] += delta_angle + delta_coning;
- _imu._delta_angle_acc_dt[instance] += dt;
- // save previous delta angle for coning correction
- _imu._last_delta_angle[instance] = delta_angle;
- _imu._last_raw_gyro[instance] = gyro;
- // apply the low pass filter
- Vector3f gyro_filtered = _imu._gyro_filter[instance].apply(gyro);
- // apply the notch filter
- if (_gyro_notch_enabled()) {
- gyro_filtered = _imu._gyro_notch_filter[instance].apply(gyro_filtered);
- }
- // apply the harmonic notch filter
- if (gyro_harmonic_notch_enabled()) {
- gyro_filtered = _imu._gyro_harmonic_notch_filter[instance].apply(gyro_filtered);
- }
- // if the filtering failed in any way then reset the filters and keep the old value
- if (gyro_filtered.is_nan() || gyro_filtered.is_inf()) {
- _imu._gyro_filter[instance].reset();
- _imu._gyro_notch_filter[instance].reset();
- _imu._gyro_harmonic_notch_filter[instance].reset();
- } else {
- _imu._gyro_filtered[instance] = gyro_filtered;
- }
- _imu._new_gyro_data[instance] = true;
- }
- if (!_imu.batchsampler.doing_post_filter_logging()) {
- log_gyro_raw(instance, sample_us, gyro);
- }
- else {
- log_gyro_raw(instance, sample_us, _imu._gyro_filtered[instance]);
- }
- }
- void AP_InertialSensor_Backend::log_gyro_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &gyro)
- {
- AP_Logger *logger = AP_Logger::get_singleton();
- if (logger == nullptr) {
- // should not have been called
- return;
- }
- if (should_log_imu_raw()) {
- uint64_t now = AP_HAL::micros64();
- struct log_GYRO pkt = {
- LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GYR1_MSG+instance)),
- time_us : now,
- sample_us : sample_us?sample_us:now,
- GyrX : gyro.x,
- GyrY : gyro.y,
- GyrZ : gyro.z
- };
- logger->WriteBlock(&pkt, sizeof(pkt));
- } else {
- if (!_imu.batchsampler.doing_sensor_rate_logging()) {
- _imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_GYRO, sample_us, gyro);
- }
- }
- }
- /*
- rotate accel vector, scale and add the accel offset
- */
- void AP_InertialSensor_Backend::_publish_accel(uint8_t instance, const Vector3f &accel)
- {
- if ((1U<<instance) & _imu.imu_kill_mask) {
- return;
- }
- _imu._accel[instance] = accel;
- _imu._accel_healthy[instance] = true;
- // publish delta velocity
- _imu._delta_velocity[instance] = _imu._delta_velocity_acc[instance];
- _imu._delta_velocity_dt[instance] = _imu._delta_velocity_acc_dt[instance];
- _imu._delta_velocity_valid[instance] = true;
- if (_imu._accel_calibrator != nullptr && _imu._accel_calibrator[instance].get_status() == ACCEL_CAL_COLLECTING_SAMPLE) {
- Vector3f cal_sample = _imu._delta_velocity[instance];
- //remove rotation
- cal_sample.rotate_inverse(_imu._board_orientation);
- // remove scale factors
- const Vector3f &accel_scale = _imu._accel_scale[instance].get();
- cal_sample.x /= accel_scale.x;
- cal_sample.y /= accel_scale.y;
- cal_sample.z /= accel_scale.z;
-
- //remove offsets
- cal_sample += _imu._accel_offset[instance].get() * _imu._delta_velocity_dt[instance] ;
- _imu._accel_calibrator[instance].new_sample(cal_sample, _imu._delta_velocity_dt[instance]);
- }
- }
- void AP_InertialSensor_Backend::_notify_new_accel_raw_sample(uint8_t instance,
- const Vector3f &accel,
- uint64_t sample_us,
- bool fsync_set)
- {
- if ((1U<<instance) & _imu.imu_kill_mask) {
- return;
- }
- float dt;
- _update_sensor_rate(_imu._sample_accel_count[instance], _imu._sample_accel_start_us[instance],
- _imu._accel_raw_sample_rates[instance]);
- uint64_t last_sample_us = _imu._accel_last_sample_us[instance];
- /*
- we have two classes of sensors. FIFO based sensors produce data
- at a very predictable overall rate, but the data comes in
- bunches, so we use the provided sample rate for deltaT. Non-FIFO
- sensors don't bunch up samples, but also tend to vary in actual
- rate, so we use the provided sample_us to get the deltaT. The
- difference between the two is whether sample_us is provided.
- */
- if (sample_us != 0 && _imu._accel_last_sample_us[instance] != 0) {
- dt = (sample_us - _imu._accel_last_sample_us[instance]) * 1.0e-6f;
- _imu._accel_last_sample_us[instance] = sample_us;
- } else {
- // don't accept below 100Hz
- if (_imu._accel_raw_sample_rates[instance] < 100) {
- return;
- }
- dt = 1.0f / _imu._accel_raw_sample_rates[instance];
- _imu._accel_last_sample_us[instance] = AP_HAL::micros64();
- }
- #if AP_MODULE_SUPPORTED
- // call accel_sample hook if any
- AP_Module::call_hook_accel_sample(instance, dt, accel, fsync_set);
- #endif
-
- _imu.calc_vibration_and_clipping(instance, accel, dt);
- {
- WITH_SEMAPHORE(_sem);
- uint64_t now = AP_HAL::micros64();
- if (now - last_sample_us > 100000U) {
- // zero accumulator if sensor was unhealthy for 0.1s
- _imu._delta_velocity_acc[instance].zero();
- _imu._delta_velocity_acc_dt[instance] = 0;
- dt = 0;
- }
-
- // delta velocity
- _imu._delta_velocity_acc[instance] += accel * dt;
- _imu._delta_velocity_acc_dt[instance] += dt;
- _imu._accel_filtered[instance] = _imu._accel_filter[instance].apply(accel);
- if (_imu._accel_filtered[instance].is_nan() || _imu._accel_filtered[instance].is_inf()) {
- _imu._accel_filter[instance].reset();
- }
- _imu.set_accel_peak_hold(instance, _imu._accel_filtered[instance]);
- _imu._new_accel_data[instance] = true;
- }
- if (!_imu.batchsampler.doing_post_filter_logging()) {
- log_accel_raw(instance, sample_us, accel);
- } else {
- log_accel_raw(instance, sample_us, _imu._accel_filtered[instance]);
- }
- }
- void AP_InertialSensor_Backend::_notify_new_accel_sensor_rate_sample(uint8_t instance, const Vector3f &accel)
- {
- if (!_imu.batchsampler.doing_sensor_rate_logging()) {
- return;
- }
- _imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_ACCEL, AP_HAL::micros64(), accel);
- }
- void AP_InertialSensor_Backend::_notify_new_gyro_sensor_rate_sample(uint8_t instance, const Vector3f &gyro)
- {
- if (!_imu.batchsampler.doing_sensor_rate_logging()) {
- return;
- }
- _imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_GYRO, AP_HAL::micros64(), gyro);
- }
- void AP_InertialSensor_Backend::log_accel_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &accel)
- {
- AP_Logger *logger = AP_Logger::get_singleton();
- if (logger == nullptr) {
- // should not have been called
- return;
- }
- if (should_log_imu_raw()) {
- uint64_t now = AP_HAL::micros64();
- struct log_ACCEL pkt = {
- LOG_PACKET_HEADER_INIT((uint8_t)(LOG_ACC1_MSG+instance)),
- time_us : now,
- sample_us : sample_us?sample_us:now,
- AccX : accel.x,
- AccY : accel.y,
- AccZ : accel.z
- };
- logger->WriteBlock(&pkt, sizeof(pkt));
- } else {
- if (!_imu.batchsampler.doing_sensor_rate_logging()) {
- _imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_ACCEL, sample_us, accel);
- }
- }
- }
- void AP_InertialSensor_Backend::_set_accel_max_abs_offset(uint8_t instance,
- float max_offset)
- {
- _imu._accel_max_abs_offsets[instance] = max_offset;
- }
- // set accelerometer error_count
- void AP_InertialSensor_Backend::_set_accel_error_count(uint8_t instance, uint32_t error_count)
- {
- _imu._accel_error_count[instance] = error_count;
- }
- // set gyro error_count
- void AP_InertialSensor_Backend::_set_gyro_error_count(uint8_t instance, uint32_t error_count)
- {
- _imu._gyro_error_count[instance] = error_count;
- }
- // increment accelerometer error_count
- void AP_InertialSensor_Backend::_inc_accel_error_count(uint8_t instance)
- {
- _imu._accel_error_count[instance]++;
- }
- // increment gyro error_count
- void AP_InertialSensor_Backend::_inc_gyro_error_count(uint8_t instance)
- {
- _imu._gyro_error_count[instance]++;
- }
- // return the requested sample rate in Hz
- uint16_t AP_InertialSensor_Backend::get_sample_rate_hz(void) const
- {
- // enum can be directly cast to Hz
- return (uint16_t)_imu._sample_rate;
- }
- /*
- publish a temperature value for an instance
- */
- void AP_InertialSensor_Backend::_publish_temperature(uint8_t instance, float temperature)
- {
- if ((1U<<instance) & _imu.imu_kill_mask) {
- return;
- }
- _imu._temperature[instance] = temperature;
- /* give the temperature to the control loop in order to keep it constant*/
- if (instance == 0) {
- hal.util->set_imu_temp(temperature);
- }
- }
- /*
- common gyro update function for all backends
- */
- void AP_InertialSensor_Backend::update_gyro(uint8_t instance)
- {
- WITH_SEMAPHORE(_sem);
- if ((1U<<instance) & _imu.imu_kill_mask) {
- return;
- }
- if (_imu._new_gyro_data[instance]) {
- _publish_gyro(instance, _imu._gyro_filtered[instance]);
- _imu._new_gyro_data[instance] = false;
- }
- // possibly update filter frequency
- if (_last_gyro_filter_hz != _gyro_filter_cutoff() || sensors_converging()) {
- _imu._gyro_filter[instance].set_cutoff_frequency(_gyro_raw_sample_rate(instance), _gyro_filter_cutoff());
- _last_gyro_filter_hz = _gyro_filter_cutoff();
- }
- // possily update the harmonic notch filter parameters
- if (!is_equal(_last_harmonic_notch_bandwidth_hz, gyro_harmonic_notch_bandwidth_hz()) ||
- !is_equal(_last_harmonic_notch_attenuation_dB, gyro_harmonic_notch_attenuation_dB()) ||
- sensors_converging()) {
- _imu._gyro_harmonic_notch_filter[instance].init(_gyro_raw_sample_rate(instance), gyro_harmonic_notch_center_freq_hz(), gyro_harmonic_notch_bandwidth_hz(), gyro_harmonic_notch_attenuation_dB());
- _last_harmonic_notch_center_freq_hz = gyro_harmonic_notch_center_freq_hz();
- _last_harmonic_notch_bandwidth_hz = gyro_harmonic_notch_bandwidth_hz();
- _last_harmonic_notch_attenuation_dB = gyro_harmonic_notch_attenuation_dB();
- } else if (!is_equal(_last_harmonic_notch_center_freq_hz, gyro_harmonic_notch_center_freq_hz())) {
- _imu._gyro_harmonic_notch_filter[instance].update(gyro_harmonic_notch_center_freq_hz());
- _last_harmonic_notch_center_freq_hz = gyro_harmonic_notch_center_freq_hz();
- }
- // possily update the notch filter parameters
- if (!is_equal(_last_notch_center_freq_hz, _gyro_notch_center_freq_hz()) ||
- !is_equal(_last_notch_bandwidth_hz, _gyro_notch_bandwidth_hz()) ||
- !is_equal(_last_notch_attenuation_dB, _gyro_notch_attenuation_dB()) ||
- sensors_converging()) {
- _imu._gyro_notch_filter[instance].init(_gyro_raw_sample_rate(instance), _gyro_notch_center_freq_hz(), _gyro_notch_bandwidth_hz(), _gyro_notch_attenuation_dB());
- _last_notch_center_freq_hz = _gyro_notch_center_freq_hz();
- _last_notch_bandwidth_hz = _gyro_notch_bandwidth_hz();
- _last_notch_attenuation_dB = _gyro_notch_attenuation_dB();
- }
- }
- /*
- common accel update function for all backends
- */
- void AP_InertialSensor_Backend::update_accel(uint8_t instance)
- {
- WITH_SEMAPHORE(_sem);
- if ((1U<<instance) & _imu.imu_kill_mask) {
- return;
- }
- if (_imu._new_accel_data[instance]) {
- _publish_accel(instance, _imu._accel_filtered[instance]);
- _imu._new_accel_data[instance] = false;
- }
-
- // possibly update filter frequency
- if (_last_accel_filter_hz != _accel_filter_cutoff()) {
- _imu._accel_filter[instance].set_cutoff_frequency(_accel_raw_sample_rate(instance), _accel_filter_cutoff());
- _last_accel_filter_hz = _accel_filter_cutoff();
- }
- }
- bool AP_InertialSensor_Backend::should_log_imu_raw() const
- {
- if (_imu._log_raw_bit == (uint32_t)-1) {
- // tracker does not set a bit
- return false;
- }
- const AP_Logger *logger = AP_Logger::get_singleton();
- if (logger == nullptr) {
- return false;
- }
- if (!logger->should_log(_imu._log_raw_bit)) {
- return false;
- }
- return true;
- }
|