/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
parent class for aircraft simulators
*/
#include "SIM_Aircraft.h"
#include
#include
#include
#if defined(__CYGWIN__) || defined(__CYGWIN64__)
#include
#include
#include
#endif
#include
#include
#include
using namespace SITL;
/*
parent class for all simulator types
*/
Aircraft::Aircraft(const char *frame_str) :
ground_level(0.0f),
frame_height(0.0f),
dcm(),
gyro(),
gyro_prev(),
ang_accel(),
velocity_ef(),
mass(0.0f),
accel_body(0.0f, 0.0f, -GRAVITY_MSS),
time_now_us(0),
gyro_noise(radians(0.1f)),
accel_noise(0.3f),
rate_hz(1200.0f),
autotest_dir(nullptr),
frame(frame_str),
#if defined(__CYGWIN__) || defined(__CYGWIN64__)
min_sleep_time(20000)
#else
min_sleep_time(5000)
#endif
{
// make the SIM_* variables available to simulator backends
sitl = AP::sitl();
set_speedup(1.0f);
last_wall_time_us = get_wall_time_us();
frame_counter = 0;
// allow for orientation settings, such as with tailsitters
enum ap_var_type ptype;
ahrs_orientation = (AP_Int8 *)AP_Param::find("AHRS_ORIENTATION", &ptype);
terrain = reinterpret_cast(AP_Param::find_object("TERRAIN_"));
}
void Aircraft::set_start_location(const Location &start_loc, const float start_yaw)
{
home = start_loc;
home_yaw = start_yaw;
home_is_set = true;
::printf("Home: %f %f alt=%fm hdg=%f\n",
home.lat*1e-7,
home.lng*1e-7,
home.alt*0.01,
home_yaw);
location = home;
ground_level = home.alt * 0.01f;
dcm.from_euler(0.0f, 0.0f, radians(home_yaw));
}
/*
return difference in altitude between home position and current loc
*/
float Aircraft::ground_height_difference() const
{
float h1, h2;
if (sitl &&
sitl->terrain_enable && terrain &&
terrain->height_amsl(home, h1, false) &&
terrain->height_amsl(location, h2, false)) {
return h2 - h1;
}
return 0.0f;
}
void Aircraft::set_precland(SIM_Precland *_precland) {
precland = _precland;
precland->set_default_location(home.lat * 1.0e-7f, home.lng * 1.0e-7f, static_cast(get_home_yaw()));
}
/*
return current height above ground level (metres)
*/
float Aircraft::hagl() const
{
return (-position.z) + home.alt * 0.01f - ground_level - frame_height - ground_height_difference();
}
/*
return true if we are on the ground
*/
bool Aircraft::on_ground() const
{
return hagl() <= 0.001f; // prevent bouncing around ground
}
/*
update location from position
*/
void Aircraft::update_position(void)
{
location = home;
location.offset(position.x, position.y);
location.alt = static_cast(home.alt - position.z * 100.0f);
#if 0
// logging of raw sitl data
Vector3f accel_ef = dcm * accel_body;
AP::logger().Write("SITL", "TimeUS,VN,VE,VD,AN,AE,AD,PN,PE,PD", "Qfffffffff",
AP_HAL::micros64(),
velocity_ef.x, velocity_ef.y, velocity_ef.z,
accel_ef.x, accel_ef.y, accel_ef.z,
position.x, position.y, position.z);
#endif
}
/*
update body magnetic field from position and rotation
*/
void Aircraft::update_mag_field_bf()
{
// get the magnetic field intensity and orientation
float intensity;
float declination;
float inclination;
AP_Declination::get_mag_field_ef(location.lat * 1e-7f, location.lng * 1e-7f, intensity, declination, inclination);
// create a field vector and rotate to the required orientation
Vector3f mag_ef(1e3f * intensity, 0.0f, 0.0f);
Matrix3f R;
R.from_euler(0.0f, -ToRad(inclination), ToRad(declination));
mag_ef = R * mag_ef;
// calculate frame height above ground
const float frame_height_agl = fmaxf((-position.z) + home.alt * 0.01f - ground_level, 0.0f);
if (!sitl) {
// running example program
return;
}
// calculate scaling factor that varies from 1 at ground level to 1/8 at sitl->mag_anomaly_hgt
// Assume magnetic anomaly strength scales with 1/R**3
float anomaly_scaler = (sitl->mag_anomaly_hgt / (frame_height_agl + sitl->mag_anomaly_hgt));
anomaly_scaler = anomaly_scaler * anomaly_scaler * anomaly_scaler;
// add scaled anomaly to earth field
mag_ef += sitl->mag_anomaly_ned.get() * anomaly_scaler;
// Rotate into body frame
mag_bf = dcm.transposed() * mag_ef;
// add motor interference
mag_bf += sitl->mag_mot.get() * battery_current;
}
/* advance time by deltat in seconds */
void Aircraft::time_advance()
{
// we only advance time if it hasn't been advanced already by the
// backend
if (last_time_us == time_now_us) {
time_now_us += frame_time_us;
}
last_time_us = time_now_us;
if (use_time_sync) {
sync_frame_time();
}
}
/* setup the frame step time */
void Aircraft::setup_frame_time(float new_rate, float new_speedup)
{
rate_hz = new_rate;
target_speedup = new_speedup;
frame_time_us = static_cast(1.0e6f/rate_hz);
scaled_frame_time_us = frame_time_us/target_speedup;
last_wall_time_us = get_wall_time_us();
achieved_rate_hz = rate_hz;
}
/* adjust frame_time calculation */
void Aircraft::adjust_frame_time(float new_rate)
{
if (!is_equal(rate_hz, new_rate)) {
rate_hz = new_rate;
frame_time_us = static_cast(1.0e6f/rate_hz);
scaled_frame_time_us = frame_time_us/target_speedup;
}
}
/*
try to synchronise simulation time with wall clock time, taking
into account desired speedup
This tries to take account of possible granularity of
get_wall_time_us() so it works reasonably well on windows
*/
void Aircraft::sync_frame_time(void)
{
frame_counter++;
uint64_t now = get_wall_time_us();
if (frame_counter >= 40 &&
now > last_wall_time_us) {
const float rate = frame_counter * 1.0e6f/(now - last_wall_time_us);
achieved_rate_hz = (0.99f*achieved_rate_hz) + (0.01f * rate);
if (achieved_rate_hz < rate_hz * target_speedup) {
scaled_frame_time_us *= 0.999f;
} else {
scaled_frame_time_us /= 0.999f;
}
#if 0
::printf("achieved_rate_hz=%.3f rate=%.2f rate_hz=%.3f sft=%.1f\n",
static_cast(achieved_rate_hz),
static_cast(rate),
static_cast(rate_hz),
static_cast(scaled_frame_time_us));
#endif
const uint32_t sleep_time = static_cast(scaled_frame_time_us * frame_counter);
if (sleep_time > min_sleep_time) {
usleep(sleep_time);
}
last_wall_time_us = now;
frame_counter = 0;
}
}
/* add noise based on throttle level (from 0..1) */
void Aircraft::add_noise(float throttle)
{
gyro += Vector3f(rand_normal(0, 1),
rand_normal(0, 1),
rand_normal(0, 1)) * gyro_noise * fabsf(throttle);
accel_body += Vector3f(rand_normal(0, 1),
rand_normal(0, 1),
rand_normal(0, 1)) * accel_noise * fabsf(throttle);
}
/*
normal distribution random numbers
See
http://en.literateprograms.org/index.php?title=Special:DownloadCode/Box-Muller_transform_%28C%29&oldid=7011
*/
double Aircraft::rand_normal(double mean, double stddev)
{
static double n2 = 0.0;
static int n2_cached = 0;
if (!n2_cached) {
double x, y, r;
do
{
x = 2.0 * rand()/RAND_MAX - 1;
y = 2.0 * rand()/RAND_MAX - 1;
r = x*x + y*y;
} while (is_zero(r) || r > 1.0);
const double d = sqrt(-2.0 * log(r)/r);
const double n1 = x * d;
n2 = y * d;
const double result = n1 * stddev + mean;
n2_cached = 1;
return result;
} else {
n2_cached = 0;
return n2 * stddev + mean;
}
}
/*
fill a sitl_fdm structure from the simulator state
*/
void Aircraft::fill_fdm(struct sitl_fdm &fdm)
{
if (use_smoothing) {
smooth_sensors();
}
fdm.timestamp_us = time_now_us;
if (fdm.home.lat == 0 && fdm.home.lng == 0) {
// initialise home
fdm.home = home;
}
fdm.latitude = location.lat * 1.0e-7;
fdm.longitude = location.lng * 1.0e-7;
fdm.altitude = location.alt * 1.0e-2;
fdm.heading = degrees(atan2f(velocity_ef.y, velocity_ef.x));
fdm.speedN = velocity_ef.x;
fdm.speedE = velocity_ef.y;
fdm.speedD = velocity_ef.z;
fdm.xAccel = accel_body.x;
fdm.yAccel = accel_body.y;
fdm.zAccel = accel_body.z;
fdm.rollRate = degrees(gyro.x);
fdm.pitchRate = degrees(gyro.y);
fdm.yawRate = degrees(gyro.z);
fdm.angAccel.x = degrees(ang_accel.x);
fdm.angAccel.y = degrees(ang_accel.y);
fdm.angAccel.z = degrees(ang_accel.z);
float r, p, y;
dcm.to_euler(&r, &p, &y);
fdm.rollDeg = degrees(r);
fdm.pitchDeg = degrees(p);
fdm.yawDeg = degrees(y);
fdm.quaternion.from_rotation_matrix(dcm);
fdm.airspeed = airspeed_pitot;
fdm.battery_voltage = battery_voltage;
fdm.battery_current = battery_current;
fdm.rpm1 = rpm1;
fdm.rpm2 = rpm2;
fdm.rcin_chan_count = rcin_chan_count;
fdm.range = range;
memcpy(fdm.rcin, rcin, rcin_chan_count * sizeof(float));
fdm.bodyMagField = mag_bf;
// copy laser scanner results
fdm.scanner.points = scanner.points;
fdm.scanner.ranges = scanner.ranges;
if (smoothing.enabled) {
fdm.xAccel = smoothing.accel_body.x;
fdm.yAccel = smoothing.accel_body.y;
fdm.zAccel = smoothing.accel_body.z;
fdm.rollRate = degrees(smoothing.gyro.x);
fdm.pitchRate = degrees(smoothing.gyro.y);
fdm.yawRate = degrees(smoothing.gyro.z);
fdm.speedN = smoothing.velocity_ef.x;
fdm.speedE = smoothing.velocity_ef.y;
fdm.speedD = smoothing.velocity_ef.z;
fdm.latitude = smoothing.location.lat * 1.0e-7;
fdm.longitude = smoothing.location.lng * 1.0e-7;
fdm.altitude = smoothing.location.alt * 1.0e-2;
}
if (ahrs_orientation != nullptr) {
enum Rotation imu_rotation = (enum Rotation)ahrs_orientation->get();
if (imu_rotation != ROTATION_NONE) {
Matrix3f m = dcm;
Matrix3f rot;
rot.from_rotation(imu_rotation);
m = m * rot.transposed();
m.to_euler(&r, &p, &y);
fdm.rollDeg = degrees(r);
fdm.pitchDeg = degrees(p);
fdm.yawDeg = degrees(y);
fdm.quaternion.from_rotation_matrix(m);
}
}
if (!is_equal(last_speedup, float(sitl->speedup)) && sitl->speedup > 0) {
set_speedup(sitl->speedup);
last_speedup = sitl->speedup;
}
}
uint64_t Aircraft::get_wall_time_us() const
{
#if defined(__CYGWIN__) || defined(__CYGWIN64__)
static DWORD tPrev;
static uint64_t last_ret_us;
if (tPrev == 0) {
tPrev = timeGetTime();
return 0;
}
DWORD now = timeGetTime();
last_ret_us += (uint64_t)((now - tPrev)*1000UL);
tPrev = now;
return last_ret_us;
#else
struct timeval tp;
gettimeofday(&tp, nullptr);
return static_cast(tp.tv_sec * 1.0e6 + tp.tv_usec);
#endif
}
/*
set simulation speedup
*/
void Aircraft::set_speedup(float speedup)
{
setup_frame_time(rate_hz, speedup);
}
void Aircraft::update_model(const struct sitl_input &input)
{
if (!home_is_set) {
if (sitl == nullptr) {
return;
}
Location loc;
loc.lat = sitl->opos.lat.get() * 1.0e7;
loc.lng = sitl->opos.lng.get() * 1.0e7;
loc.alt = sitl->opos.alt.get() * 1.0e2;
set_start_location(loc, sitl->opos.hdg.get());
}
update(input);
}
/*
update the simulation attitude and relative position
*/
void Aircraft::update_dynamics(const Vector3f &rot_accel)
{
const float delta_time = frame_time_us * 1.0e-6f;
// update rotational rates in body frame
gyro += rot_accel * delta_time;
gyro.x = constrain_float(gyro.x, -radians(2000.0f), radians(2000.0f));
gyro.y = constrain_float(gyro.y, -radians(2000.0f), radians(2000.0f));
gyro.z = constrain_float(gyro.z, -radians(2000.0f), radians(2000.0f));
// estimate angular acceleration using a first order difference calculation
// TODO the simulator interface should provide the angular acceleration
ang_accel = (gyro - gyro_prev) / delta_time;
gyro_prev = gyro;
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0.0f, 0.0f, GRAVITY_MSS);
// if we're on the ground, then our vertical acceleration is limited
// to zero. This effectively adds the force of the ground on the aircraft
if (on_ground() && accel_earth.z > 0) {
accel_earth.z = 0;
}
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0.0f, 0.0f, -GRAVITY_MSS));
// new velocity vector
velocity_ef += accel_earth * delta_time;
const bool was_on_ground = on_ground();
// new position vector
position += velocity_ef * delta_time;
// velocity relative to air mass, in earth frame
velocity_air_ef = velocity_ef + wind_ef;
// velocity relative to airmass in body frame
velocity_air_bf = dcm.transposed() * velocity_air_ef;
// airspeed
airspeed = velocity_air_ef.length();
// airspeed as seen by a fwd pitot tube (limited to 120m/s)
airspeed_pitot = constrain_float(velocity_air_bf * Vector3f(1.0f, 0.0f, 0.0f), 0.0f, 120.0f);
// constrain height to the ground
if (on_ground()) {
if (!was_on_ground && AP_HAL::millis() - last_ground_contact_ms > 1000) {
printf("Hit ground at %f m/s\n", velocity_ef.z);
last_ground_contact_ms = AP_HAL::millis();
}
position.z = -(ground_level + frame_height - home.alt * 0.01f + ground_height_difference());
switch (ground_behavior) {
case GROUND_BEHAVIOR_NONE:
break;
case GROUND_BEHAVIOR_NO_MOVEMENT: {
// zero roll/pitch, but keep yaw
float r, p, y;
dcm.to_euler(&r, &p, &y);
dcm.from_euler(0.0f, 0.0f, y);
// no X or Y movement
velocity_ef.x = 0.0f;
velocity_ef.y = 0.0f;
if (velocity_ef.z > 0.0f) {
velocity_ef.z = 0.0f;
}
gyro.zero();
use_smoothing = true;
break;
}
case GROUND_BEHAVIOR_FWD_ONLY: {
// zero roll/pitch, but keep yaw
float r, p, y;
dcm.to_euler(&r, &p, &y);
if (velocity_ef.length() < 5) {
// at high speeds don't constrain pitch, otherwise we
// can get stuck in takeoff
p = 0;
} else {
p = MAX(p, 0);
}
dcm.from_euler(0.0f, p, y);
// only fwd movement
Vector3f v_bf = dcm.transposed() * velocity_ef;
v_bf.y = 0.0f;
if (v_bf.x < 0.0f) {
v_bf.x = 0.0f;
}
velocity_ef = dcm * v_bf;
if (velocity_ef.z > 0.0f) {
velocity_ef.z = 0.0f;
}
gyro.zero();
use_smoothing = true;
break;
}
case GROUND_BEHAVIOR_TAILSITTER: {
// point straight up
float r, p, y;
dcm.to_euler(&r, &p, &y);
dcm.from_euler(0.0f, radians(90), y);
// no movement
if (accel_earth.z > -1.1*GRAVITY_MSS) {
velocity_ef.zero();
}
gyro.zero();
use_smoothing = true;
break;
}
}
}
}
/*
update wind vector
*/
void Aircraft::update_wind(const struct sitl_input &input)
{
// wind vector in earth frame
wind_ef = Vector3f(cosf(radians(input.wind.direction))*cosf(radians(input.wind.dir_z)),
sinf(radians(input.wind.direction))*cosf(radians(input.wind.dir_z)),
sinf(radians(input.wind.dir_z))) * input.wind.speed;
const float wind_turb = input.wind.turbulence * 10.0f; // scale input.wind.turbulence to match standard deviation when using iir_coef=0.98
const float iir_coef = 0.98f; // filtering high frequencies from turbulence
if (wind_turb > 0 && !on_ground()) {
turbulence_azimuth = turbulence_azimuth + (2 * rand());
turbulence_horizontal_speed =
static_cast(turbulence_horizontal_speed * iir_coef+wind_turb * rand_normal(0, 1) * (1 - iir_coef));
turbulence_vertical_speed = static_cast((turbulence_vertical_speed * iir_coef) + (wind_turb * rand_normal(0, 1) * (1 - iir_coef)));
wind_ef += Vector3f(
cosf(radians(turbulence_azimuth)) * turbulence_horizontal_speed,
sinf(radians(turbulence_azimuth)) * turbulence_horizontal_speed,
turbulence_vertical_speed);
}
}
/*
smooth sensors for kinematic consistancy when we interact with the ground
*/
void Aircraft::smooth_sensors(void)
{
uint64_t now = time_now_us;
Vector3f delta_pos = position - smoothing.position;
if (smoothing.last_update_us == 0 || delta_pos.length() > 10) {
smoothing.position = position;
smoothing.rotation_b2e = dcm;
smoothing.accel_body = accel_body;
smoothing.velocity_ef = velocity_ef;
smoothing.gyro = gyro;
smoothing.last_update_us = now;
smoothing.location = location;
printf("Smoothing reset at %.3f\n", now * 1.0e-6f);
return;
}
const float delta_time = (now - smoothing.last_update_us) * 1.0e-6f;
if (delta_time < 0 || delta_time > 0.1) {
return;
}
// calculate required accel to get us to desired position and velocity in the time_constant
const float time_constant = 0.1f;
Vector3f dvel = (velocity_ef - smoothing.velocity_ef) + (delta_pos / time_constant);
Vector3f accel_e = dvel / time_constant + (dcm * accel_body + Vector3f(0.0f, 0.0f, GRAVITY_MSS));
const float accel_limit = 14 * GRAVITY_MSS;
accel_e.x = constrain_float(accel_e.x, -accel_limit, accel_limit);
accel_e.y = constrain_float(accel_e.y, -accel_limit, accel_limit);
accel_e.z = constrain_float(accel_e.z, -accel_limit, accel_limit);
smoothing.accel_body = smoothing.rotation_b2e.transposed() * (accel_e + Vector3f(0.0f, 0.0f, -GRAVITY_MSS));
// calculate rotational rate to get us to desired attitude in time constant
Quaternion desired_q, current_q, error_q;
desired_q.from_rotation_matrix(dcm);
desired_q.normalize();
current_q.from_rotation_matrix(smoothing.rotation_b2e);
current_q.normalize();
error_q = desired_q / current_q;
error_q.normalize();
Vector3f angle_differential;
error_q.to_axis_angle(angle_differential);
smoothing.gyro = gyro + angle_differential / time_constant;
float R, P, Y;
smoothing.rotation_b2e.to_euler(&R, &P, &Y);
float R2, P2, Y2;
dcm.to_euler(&R2, &P2, &Y2);
#if 0
AP::logger().Write("SMOO", "TimeUS,AEx,AEy,AEz,DPx,DPy,DPz,R,P,Y,R2,P2,Y2",
"Qffffffffffff",
AP_HAL::micros64(),
degrees(angle_differential.x),
degrees(angle_differential.y),
degrees(angle_differential.z),
delta_pos.x, delta_pos.y, delta_pos.z,
degrees(R), degrees(P), degrees(Y),
degrees(R2), degrees(P2), degrees(Y2));
#endif
// integrate to get new attitude
smoothing.rotation_b2e.rotate(smoothing.gyro * delta_time);
smoothing.rotation_b2e.normalize();
// integrate to get new position
smoothing.velocity_ef += accel_e * delta_time;
smoothing.position += smoothing.velocity_ef * delta_time;
smoothing.location = home;
smoothing.location.offset(smoothing.position.x, smoothing.position.y);
smoothing.location.alt = static_cast(home.alt - smoothing.position.z * 100.0f);
smoothing.last_update_us = now;
smoothing.enabled = true;
}
/*
return a filtered servo input as a value from -1 to 1
servo is assumed to be 1000 to 2000, trim at 1500
*/
float Aircraft::filtered_idx(float v, uint8_t idx)
{
if (sitl->servo_speed <= 0) {
return v;
}
const float cutoff = 1.0f / (2 * M_PI * sitl->servo_speed);
servo_filter[idx].set_cutoff_frequency(cutoff);
return servo_filter[idx].apply(v, frame_time_us * 1.0e-6f);
}
/*
return a filtered servo input as a value from -1 to 1
servo is assumed to be 1000 to 2000, trim at 1500
*/
float Aircraft::filtered_servo_angle(const struct sitl_input &input, uint8_t idx)
{
const float v = (input.servos[idx] - 1500)/500.0f;
return filtered_idx(v, idx);
}
/*
return a filtered servo input as a value from 0 to 1
servo is assumed to be 1000 to 2000
*/
float Aircraft::filtered_servo_range(const struct sitl_input &input, uint8_t idx)
{
const float v = (input.servos[idx] - 1000)/1000.0f;
return filtered_idx(v, idx);
}
// extrapolate sensors by a given delta time in seconds
void Aircraft::extrapolate_sensors(float delta_time)
{
Vector3f accel_earth = dcm * accel_body;
accel_earth.z += GRAVITY_MSS;
dcm.rotate(gyro * delta_time);
dcm.normalize();
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0,0,-GRAVITY_MSS));
// new velocity and position vectors
velocity_ef += accel_earth * delta_time;
position += velocity_ef * delta_time;
velocity_air_ef = velocity_ef + wind_ef;
velocity_air_bf = dcm.transposed() * velocity_air_ef;
}
void Aircraft::update_external_payload(const struct sitl_input &input)
{
external_payload_mass = 0;
// update sprayer
if (sprayer && sprayer->is_enabled()) {
sprayer->update(input);
external_payload_mass += sprayer->payload_mass();
}
// update grippers
if (gripper && gripper->is_enabled()) {
gripper->set_alt(hagl());
gripper->update(input);
external_payload_mass += gripper->payload_mass();
}
if (gripper_epm && gripper_epm->is_enabled()) {
gripper_epm->update(input);
external_payload_mass += gripper_epm->payload_mass();
}
// update parachute
if (parachute && parachute->is_enabled()) {
parachute->update(input);
// TODO: add drag to vehicle, presumably proportional to velocity
}
if (precland && precland->is_enabled()) {
precland->update(get_location(), get_position());
}
}
void Aircraft::add_shove_forces(Vector3f &rot_accel, Vector3f &body_accel)
{
const uint32_t now = AP_HAL::millis();
if (sitl == nullptr) {
return;
}
if (sitl->shove.t == 0) {
return;
}
if (sitl->shove.start_ms == 0) {
sitl->shove.start_ms = now;
}
if (now - sitl->shove.start_ms < uint32_t(sitl->shove.t)) {
// FIXME: can we get a vector operation here instead?
body_accel.x += sitl->shove.x;
body_accel.y += sitl->shove.y;
body_accel.z += sitl->shove.z;
} else {
sitl->shove.start_ms = 0;
sitl->shove.t = 0;
}
}
void Aircraft::add_twist_forces(Vector3f &rot_accel)
{
if (sitl == nullptr) {
return;
}
if (sitl->gnd_behav != -1) {
ground_behavior = (GroundBehaviour)sitl->gnd_behav.get();
}
const uint32_t now = AP_HAL::millis();
if (sitl == nullptr) {
return;
}
if (sitl->twist.t == 0) {
return;
}
if (sitl->twist.start_ms == 0) {
sitl->twist.start_ms = now;
}
if (now - sitl->twist.start_ms < uint32_t(sitl->twist.t)) {
// FIXME: can we get a vector operation here instead?
rot_accel.x += sitl->twist.x;
rot_accel.y += sitl->twist.y;
rot_accel.z += sitl->twist.z;
} else {
sitl->twist.start_ms = 0;
sitl->twist.t = 0;
}
}